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ABSTRACT: This article gave an exposition on the solutions of single-delay autonomous linear differential 

equations with algorithmic presentations of the solution processes of two solution methods, with illustrative 

examples verifying the consistency of both solution methods. The article went further to examine the nature of 

solutions, obtaining in the process a complete characterization of all non-oscillatory solutions of a problem 

instance in the absence of initial functions. In the sequel the article proved  that there is no nontrivial oscillatory 

solution if a constant initial function is specified for the delay differential equation in question and hence for 

delay differential equations in general. 
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I. INTRODUCTION 
 The method of steps and forward continuation recursive procedure are prevalent in the literature on 

functional differential equations.  However literature on detailed illustrative examples and robust analyses of 

problem instances is quite sparse, leaving very little room for enhanced understanding and appreciation of this 

class of differential equations. This article, which makes a positive contribution in the above regard, is 

motivated by Driver (1977) and leverages on some given problems there to conduct detailed analyses on the 

process and structure of solutions and thorough analyses of some problem instances. The algorithmic format 

used in the two solution methods, the verification of the consistency of both methods, the investigation of 

appropriate feasibility conditions on the solutions and the lucidity of our presentations are quite novel in this 

area where presentations are skeletal for the most part, forcing readers to plough through several materials and 

figure out a lot of things on their own with the attendant opportunity cost in time. See also Hale (1977) for more 

discussion on method of steps. 

 

II. PRELIMINARIES 
 For an arbitrary initial function problem: 

      (1)x t ax t bx t h    

   ( ) , , 0 (2)x t t t h    

 scalar constants continuous, , ,a b   it is clear that the integrating factor,   a t
I t e


  

 If we denote the solution on the interval   1 , , 1, 2,....
k

J k h kh k    by  y tk ,  then  

on
1

J , (1) becomes       ,x t ax t b t h   from which it is clear the integrating factor,   .
a t

I t e


   

Hence  1
y t can be obtained from the relation: 

                                                                         1 1
. (3)a t a t

y t e be t h dt C


   
   

 1
y t exists, since  a t

b e t h


  is integrable, in view of the fact that e
a t

 and   are continuous, t h  

being in  , 0 .h    

The solutions   , 1, 2,...,
k

y t k   are given recursively by:                                                                        

                                                   

   1
(4)

a t a t

k k k
y t e b e y t h dt C




   

   

 where the continuity of yk1guarantees the integrability of  be y t ha t

k



 1 and hence the continuity of 

yk ,  assuring the existence of yk ,  for 1,2,k      



An Exposition On Solution Process… 

www.ijmsi.org                                               5 | P a g e  

Above solutions are unique, arising from the unique determination of the skC  from the relation:                                      
 

     1
1 1 (5)

k k
y k h y k h


     

Note that if  1, 2,..., 1 ,j k   there is no general expression for the k jc  appearing in (6) below. Moreover 

if the initial function in (2) is not constant, it is impossible to express yk ,  in  

the form,
1

1

( ) ( ).
k

j at

k k k j

j

y t d d t e t



  
   
   

  However, if a  0  and ( )t  is a polynomial of degree m, 

say, m  0,  then the y sk '  take the form:        

                                   

   
1

00

6
m k

j j at

k k j k j

jj

y t d t c t e




 
   

 
  

 for some constants 0,1, 0,1, , 1., ; ,k j k jj j kd m c    In other words,  ky t  is the sum of some 

polynomial of degree m  and the product of 
ate and some polynomial  1kP t

 of degree 1,k   

where    0
y t t .  

The process of getting the above coefficients is easy, but the computations get rather unwieldy. The 

computational procedure is set out in the following algorithmic steps, noting that: 

                                             k
y t x t  for 

  1 , . (7)t k h kh    

 

Method 1: Algorithmic Steps: 

[1] Set k = 1 in (6) 

[2] Plug in  1
y t  for    1

,x t y t  for  x t  and   t h  for  x t h  in (1). 

[3] Compare the coefficients of the resulting left and right hand expressions to secure the , sk jc  and , sk jd  

in the relevant ranges for ,j  and obtain  1
y t . Verify that the condition    

1
0 0y   is satisfied, 

where    
0

y t t . 

 

[1] Set k = 2 in (6). 

[2]          
2 2 1

Substitute  for , for and for ( ) in (1)y t x t y t x t y t h x t h    

[3] Compare the coefficients of the resulting left and right hand expressions to secure the , sk jc  and , sk jd  

in the relevant ranges for ,j  and hence obtain 2 ( ).y t Check that the condition    
2 1

y h y h  is 

satisfied. 
 

This implementation process continues, so that at the 
th

k  stage,  k
y t is substituted for 

     , for
k

x t y t x t   and the already secured  1k
y t h


 substituted for  x t h  in (1). Then the 

coefficients of the resulting left and right hand expressions are compared to yield the , sk jc  and sk jd  for 

0,1,2,...., , 1,j m m  and hence   , for 3y t k  . Verify that the continuity condition 

     1
1 1

k k
y k h y k h


    holds. 

Alternatively,  proceed as follows: 

Method 2: Algorithmic Steps: 
 
 

[1] Set k = 1 in (76) and then    0
y t h t h   and evaluate the integral. 

[2] Set    
1 0
(0) 0 0y y   to secure 

1
,C  following the computation of the integral on the right of (4) 
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Having initialized the process in step 1,  y tk  is obtained by using (4) in conjunction with the 

condition      1
1 1 , 2,3,

k k
y k h y k h k


    . The integral in (4) can be determined since 

 y t hk 1  is already known. The condition      
1

1 1
k k

y k h y k h


    secures kC . 

 

Example 1 

 

Solve the initial function problem: 

      .1  on [0, 2],x t ax t bx t a    R      

     1 , 1, 0x t t t t      

Solution: 

 

Method 1 

 1 10 1 10 1 1 11 1
1, 1, , ;

a t
h k c c d d y t d d t c e          

     1 1 0
y t a y t b y t h        

 

   

11 1 1 11 1

11 1 11 11 1 11 2

1 1

1
0 , .

a t a t
d a c e a d a d t b t a c e

b b
d a d a d b t d d d

a a a

       

 
        

 

If 
1 1 2

0, then 1 1 1.
,

b
a c d a

a
       The condition    

1 1 1
0 0 1y d c    . 

Verification 

1 1 2 2
1 1, 0.

b b
c d a

a a
       

Therefore,    
2

1 2
1

a tb b b
y t t e

a a a
    

 
  
 

, if 0;a   that is  

                      
2 2

1
a tb b b

x t t e
a a a

    
 
 
 

 for  0 1 ,t  if a  0 . 

  

The condition b  0  precludes degeneracy of (1) to an ordinary differential equation. 

   
2 2 21 2 21

a t
y t d d t c c t e    , where 2 2,0d d  

       
2 2 1

1y t a y t b y t  
 

   

21 2 21 21 2 21 2 21

1

1 11 11

at at a t a t a t

a t

d ac e c e ac t e a d a d t ac e ac te

b d d t c e
 

 

       

   
 

                 21 2 1 11 21 11 21 1
0

a a t
d a d b d d b a d b d t c bc e e


          

We claim that the members of the set 1, ,
at

t e are linearly independent for 0.a     

Proof: 

 

1

0 1 0,  for  0.

0 0

at

at at

at

t e

ae ae a

ae

 
 

   
 
 

 This proves the claim. Indeed 1, , , and  
at at

t e te are linearly 

independent as the Wronskian turns out to be 
4

0  for 0.a a   

By the above claim it is valid to set each of the above coefficients to zero. Consequently, 
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2

11
21 21 12 2

2 2 2 2 2

21 11 1
2 2 2 3 2

, 1 ,

1
2 .

a ab d b b b b
d c c b e b e

a a a a a

d b d b d b b b b b
d

a a a a a a a

    
          

   

  
      

 

 

The requirement 
2 1
(1) (1)y y must be enforced. 

2

2 1 2 21 2 21 1 11 1 2 2
(1) (1) ( ) a a a ab b b

y y d d c c e d d c e e e
a a a

              

2 2 2 2

2 2 2 3 2 2 2
2 .a a ab b b b b b b

c e e b e
a a a a a a a

 
          

 
  Hence, 

     

2 2 2
( 1) ( 1)

2 3 2 2 2 2

2 2
( 1) ( 1) ( 1) ( 1)

3 2 2
for  [1, 2].

( ) ( ) 2

2 1 ,   

a t a t at at

a t a t a t a t
t

b b b b b b
x t y t t e e e e

a a a a a a

b b b
e be e b te

a a a

 

   


       

 
     

 

    

           
2 2 2 2 2

2 3 2 2 2 2 3 2 2 2 2
(1) 2 2a a a ab b b b b b b b b b b b

y e e b b e e
a a a a a a a a a a a a

                  

1 2 2
(1) .a ab b b

y e e
a a a

      Therefore the condition 
2 1
(1) (1)y y is satisfied. 

We proceed to show that 2 ( )y t satisfies the delay differential equation on [1, 2].  

2 2 2
( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

2 2 2

2 2
( 1) ( 1) ( 1)

2

2
( )

.

a t a t at at a t a t a t a t

a t a t a t

b b b b b
y t e be ae e e abe e be

a a a a a

b b
e abte te

a a

     

  

        

  


 

2 2 2 2
( 1) ( 1) ( 1) ( 1)

2 1 2 2 2

2 2 2 2 2 2
( 1) ( 1) ( 1) ( 1) ( 1)

2 2

( ) ( 1) 2 2

.

a t a t at at a t a t

a t a t a t a t a t

b b b b b b
ay t by t t e be ae e e abe

a a a a a a

b b b b b b
e abte te t be e

a a a a a a

   

    

          

 
         

 

 

     Therefore 2 2 1( ) ( ) ( 1).y t ay t by t    This completes the proof that 2 ( )y t solves the initial function 

problem on the interval [1, 2].  

      

Method 2: Algorithmic Steps 

 

Set k = 1 in (4) and then    0
y t h t h   , evaluate the integral. 

Set    1 0
(0) 0 0y y   to secure 

1
,C  following the computation of the integral on the right of (4) 

Having initialized the process in step 1,  y tk  is obtained by using (4) in conjunction with the 

condition      1
1 1 , 2,3,

k k
y k h y k h k


    . The integral in (4) can be determined since 

 1k
y t h


  is already known. The condition      1

1 1
k k

y k h y k h


    secures Ck . 

Consider the interval 1 [0, 1].J   Set 
0 0
( 1) ( 1) 1 1 , on [ 1, 0].y t t t t J          Apply (4) with 

1, 1k h  to get    1 1 12
.

a t a t a t a t a tb b
y t e b e t dt C e t e e C

a a
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   1 1 1 12 2 2 2
0 (0) 1 1 1 1

a tb b b b b
y C C y t t e

a a a a a
              

 
 
 

 

 1 2 2

1
1 .

a tb b
y t t e

a a a
     

 
 
 

  

Consider the interval 
2 2 1 2 2

Set[1, 2]. (1) (1) .
a ab b b

J y y e e
a a a

        Apply (4), with 2,k  to get 

    ( 1)

2 1 2 22 2
1 ( 1) 1

a t a t a t a t a tb b b
y t e b e y t dt C e b e t e dt C

a a a

  
         

             
 

 
2 2 2 2

2 22 2

a t at at a t a ab b b b
y t e e dt e tdt e dt e b dt e dt C

a a a a

    
       

 
 
 

      

 
2 2 2 2

2 23 2 2 2

1 1at at at a a at atb b b b
y t e e e e bt e t te e C

a a a a a a

     
        

  
  
  

 

2 2 2 2

2 22 2 3 2 2 2

1 1
(1)

a a a a a a a a ab b b b b b b
y e e e e e e b e e e C

a a a a a a a a a

     
            

  
  
  

2 2 2 2 2

22 2 3 2 2 2 3

2 2

22 2 3 2
2

a a a

a a a

b b b b b b b b
e e b C e

a a a a a a a a

b b b b b
e e b C e

a a a a a

           

        

 

2 2

2 2 2 3 2
1 2

a a a a ab b b b b
C e e e be e

a a a a a

    
          

 
2 2 2 2

2 3 2 2 2

1 1at at at a a at atb b b b
y t e e e e bt e t te e

a a a a a a

     
       

  
  
  

 

                      

2 2

2 2 3 2
1 2

at a a a a ab b b b b
e e e e be e

a a a a a

    
       

 
 
 

 

  
2 2 2 2 2

( 1) ( 1)

2 3 2 2 2 3

a t a tb b b b b
y t e bt te t

a a a a a

 
        

                

2 2

2 2 3 2
1 2at a a a a ab b b b b

e e e e be e
a a a a a

     
        

 
 

   

 
2 2 2 2 2

( 1) ( 1)

2 3 2 2 2 3

2 2
( 1) ( 1) ( 1) ( 1) ( 1)

2 2 3 2
2

a t a t

a t a t at at a t a t a t

b b b b b
y t e bt te t

a a a a a

b b b b b
e e e e e be e

a a a a a

 

    

      

      

 

 
2 2 2 2 2

( 1) ( 1)

2 3 2 2 2 3

2 2
( 1) ( 1) ( 1) ( 1) ( 1)

2 2 3 2

2 2 2 2 2 2
( 1) ( 1)

3 2 2 2 2 2 3 2

2

2 1 2

a t a t

a t a t at at a t a t a t

at a t a t

b b b b b
y t e bt te t

a a a a a

b b b b b
e e e e e be e

a a a a a

b b b b b b b b b
t e b e b te

a a a a a a a a a
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2 2 2 2 2 2
( 1) ( 1)

3 2 2 2 2 2 3 2
( ) 2 1 2at a t a tb b b b b b b b b

x t t e b e b te
a a a a a a a a a

     
                

     
 

 

is the solution of the initial function problem on the interval [1, 2].  This is consistent with the result obtained 

using Method 1. 

 

The case 0a  ( ) ( 1), 0; ( ) ( ) 1 , [ 1,0].x t bx t t x t t t t        
 
Hence 

2

1

1
( ) ( ) , [0,1].

2
x t bt x t bt d t      The continuity condition (0) (0) 1x    

2

1 1

1
1 ( ) ( ) 1 on [0,1].

2
d x t y t bt       

On (1,2), 
2 2 2 3

2 2

1 1
( ) ( 1) ( ) ( ) ( 1) .

2 6
x t b t b x t y t b t bt d          

The continuity condition 
2 3

2 1 2 2

1 1
(1) (1) 1 ( ) ( ) ( 1) 1.

2 6 2

b
y y d b x t y t b t bt            

Using the relation    1
with 0, 1 and 1  yields,a t a t

k k k
y t e b e y t h dt C a h k




      

   

 

       

 

1 1

1

2

0 1 1 1 1 1

2

01 ; (0) 1 1
2

( ) 1, [0,1].
2

y t y

y t

t
by t h dt C b t dt C btdt C b C C

t
x t b t

              

    

  

 

   

     

2

2 1 2

2 2 3

1 2 2 2

2 3

2 2
1 1

1 1
( 1) 1 ( 1) ;

2 6

1 1 1 1
1 1 ( ) ( 1) 1 , [1, 2].

2 2 6 2

y t

y y y t

by t h dt C b b t dt C b t bt C

b C b C b x t b t bt b t

          

               

 
  

 

This also agrees with the preceding result. 

 

Nature of nontrivial oscillatory solutions 

 One can appreciate the tedium involved in extending the solutions beyond the interval [1, 2]. Equation 

(1) is a first order scalar, linear, homogeneous delay differential equation with real coefficients. Solutions 

obtained thus far have been real non-oscillatory.  

     In general oscillatory solutions of (2) can be obtained in the absence of initial function specification by 

assuming solutions of the form:                                              

                                                                                                   

  , (8)
t

x t e


    

to obtain the transcendental equation:                                

0 (9)h
a de





   

This transcendental equation is analyzed completely to determine the nature of nontrivial solutions of oscillatory 

type. 

We assert that in general real solutions do not exist in the form   tx t e         . 

Our analysis and conclusion in the next example will validate the above assertion. 

 

Example 2 

Prove that:   ( ) 2 (10)x t x t        

 

admits non-trivial oscillating solutions and determine the nature of such solutions. 
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Prove also that there are no nontrivial oscillatory solutions if a constant initial function is specified for the delay 

differential equation (10).  

Proof 

Our proof will rely partly on the following result which we proceed to establish: 

            

 ln 1 1 (11)x x x     

To establish this result, observe that the result is equivalent to:                                                                               

                                                       

1 (12)xe x   

Set:                                                 

   1 (13)xf x e x    

 Then, 
1 0, 0

0, 0

xe x
f x

x

    
  

  
  

  

 0 0, ( ) 0 iff 0f f x x   . Thus (0, 0) is the only stationary point of  f(x).  

Now   f x e xx( ) , . In particular  0 0f      0,0  is a global minimum of  f x . 

Hence   0 ;f x x   that is 1 ,
x

e x x   ; this translates to  ln 1x x  . 

Assume a solution of the form x t e t( )  
in the example. Then 2e






  , noting that              

                                             a b  0 1,  and
2

h


 . 

The equation:                                             

2 (14)e





             

 

 is not satisfied for any real 0  , since 
2

0e



   if   is real. Therefore if  is real, then   0,  so 

that    e /2  ln / 2        

But  ln 1 0        , by an appeal to (11). 

Therefore,     1 2/ , or 1 1
2


 

 
 
 

.  Since 2 1 0,   we conclude that 
2

0
2




 


     

This contradicts the fact that  must be negative. Therefore, the equation  





e 2  cannot be satisfied 

by any real . In other words, any solution of the form   tx t e must yield i    , when  and   

are real numbers such that   0 . Plugging this   into the transcendental equation yields: 

 

                                            

2 cos sin , (15)
2 2

i e i


 
 

     
       

      
from which we infer that: 

       

          2 cos (16)
2

e
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and:  

          2 sin 17
2

e





  
   

 
  

 

If   0 , the above relations imply that:     

cos 0 (18)
2

 
 

 
 

and:                                            

sin (19)
2




 
   

 
 

 

From (18) we infer that:           2 1 ,
2 2

k
 

  k integer 

2 1 (20)k    

      

                                         is an odd integer, positive or negative. 

 19   the relation 1   is infeasible. 

Therefore:     1 (21)   

The relations (20) and (21) imply that   1, thus    1  or 1 ; hence if   1, then    1or1  and                         

                                                  

  1 2cos sin , (22)x t c t c t     

for real constants c1 and c2.   

 (22) can be rewritten in the form:        

   2 2

1 2 sin (23)x t c c t           

 

for some real δ with 0
2

  .  Clearly if c1 and c2 do not vanish at the same time, then 
2 2

1 2
0c c  , so 

that (23) represents non-trivial oscillatory solutions, being sinusoidal. 

Remarks 

If   20, 8 e



 


      0  since 2 0e




  . 

If  0 , then 0  , since real solutions do not exist in the form (8) 

If 0  , then cos 0
2




 
 
 

    1 4 3 4
2 2 2

k k
  

      

 

1 4 3 4k k     , for any integer k.  If  0 , then cos 0
2


 
 
 
   

 

4 1 4k k      (1
st
 quadrant) or 3 4 4 4k k      (4

th
 quadrant for any integer k). 

 

(16) and (17) imply that 2 cos
2

e



 
 

  
 

 and 2 sin
2

e



 

 
  

   
 

      2 2 1e e       2 2 1e              2 2 2 2e e  
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     e 2
 solutions to the transcendental equation (9) are given by     i  and the set 

       , : ,   e 2 0 . There is an infinity of oscillatory solutions. These solutions are 

given by:  

        

        
1 2

24cos sin ,
t

x t e c t c t


    

for all real  ,  for  which    2 2 e  and 
2.e      These solutions are nontrivial if 

c c1
2

2
2 0  . Furthermore, if   0  then   0  and  tan  


2   .  If   0 , then 

1 4 3 4k k    and if   0 , then, 4 1 4k k   , for any integer k. If  0 , then 0    

and  
 2 2

2 2 2

3

1 .
2 ! 2

j

j j
e    

    




 
       Therefore 

2
0   if 0.   

 

If 0,   the relation   2 2 e  is infeasible for
2 2

1,  since 1e 
  


    . In fact it is 

feasible for 0 0.45445  . In other words, 
2

0  , for 0 0.45445  . Clearly e   1  for 

  0 . In particular 0 12   for 0 045445  . . Hence,     0 1 1,  for this set of  - 

values. 

  

From the preceding analysis, we have obtained a complete characterization of all non-oscillatory solutions of 

(10) in the absence of initial functions. 

     Next we will prove that there is no nontrivial oscillatory solution if a constant initial function is specified for 

the delay differential equation (10). 

Suppose    is a continuous initial function specified by      x t t t   , ,2 0  with respect to (10). 

Then (24)     1
0 0x c     . If   0 , so that 1,    then                                        

 x t c t c t 1 2cos sin     22 2
x c         and      1 2

2
.

4 42
x c c           

Suppose   0,t   a constant. Then,  c c c c1 2 1 2

2

2
   

 

 1 1 1 1 1 2

2
2 0 0

2
c c c c c c               x t t0 2

    trivial solution. 

 

Suppose   0 , so that 4 1 4k k    or 3 4 4 4   k k , k integer. 

 

Recall that  1 2 0( ) cos( ) sin( ) , , ; ( ) , , 0 .
2 2

tx t e c t c t t x t t  
  

    
        

     
 

Let us evaluate ( )x t for all t  such that    ,
4 2

,
4 2

.t t
 

 

 
        Since  

, ,
2

t
 

  
 

 these requirements are simultaneously satisfied only by 1.   Therefore, 

for feasibility take k  0  such that , 0
2 2

 



  
  
 

 and 
4

, 0
2






 
 
  

.  From the preceding results, 
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 x e c








   












2
02

2 0
 and  1 2

4

0
4

2

2
c cx e













 

  
 

     

But   4 4 4 4

1 0 2 2 2 2

2 2 2
0 1 0,

2 2 2
x c c e c e c e e c

   

   

   
          

 
   

              

2

4 4 4 42 2
0  or 1 0. But 1 0

2 2
c e e e e

   

   

 

       
      

         
         

 if and only if  

4 4 2
.

2
e e

 

 



   

Let us examine the function 

0, if 0
2

. Clearly, 0, if  0
2

0, if  0

v v v v

v
dw

w e e e e v
dv

v

 

 


      
   

 

      Therefore w   is decreasing for v  < 0 and increasing for v  > 0; w  has global minimum at v = 0, with 

minimum value 2 2 0.585786.    (Note: ( ) 0w v v   R ). We deduce that w  is never less that 

2 2.  This proves that 
4 4

2
1 0,

2
e e

 

 



  
  

   
   

proving that 2 0c  ; hence 1 0.c   

We conclude that ( ) 0, ,
2

x t t


    which implies that only the trivial solution exists.  

For the case 0,  we earlier proved that and for feasibility.0 0.45445 1 1,       

We wish to evaluate ( )x t for all t  such that    , , .
4 2 4 2

t t
   


 

        Since  

, ,
2

t


  
 

 
 these requirements are simultaneously satisfied only by 1.   Since 1 1,     the case 

0   is infeasible. These prove that there are no nontrivial oscillatory solutions if a constant initial function is 

specified for the delay differential equation (10).  

 

Remarks: 

 

One could also reason along the same lines as in Driver (1977) to establish the existence of infinitely many 

complex roots for the equation 2 .e







   To achieve this, set 

1
, ( ) 0, where ( ) 1 ,

h

zz w z w z ze




      and h  is an arbitrary delay.  Clearly ( ) 1, for 0.w z z    But 

( )w z has an isolated singularity at 0.z   Thus by Picard’s theorem, in every neighbourhood of 

0, ( )z w z takes on every value infinitely often with the exception of 1. Hence ( ) 0w z   infinitely often and so 

the equation  2e







   must have infinitely many complex roots: ; ,i       real. However the 

subsequent analyses undertaken above are imperative for solving the problem. 

 

III. CONCLUSION 
 This article gave an exposition on how single-delay scalar differential equations could be solved using 

two methods presented in algorithmic formats. The results, which relied on the continuity of solutions, verified 

the consistency of both methods using the same problem, as well as gave a clue on the associated level of 

difficulty.  It went on to conduct detailed and rigorous analyses on the nature, characterization and flavor of 

solutions for some problem instances. The article revealed that functional differential equations are difficult to 
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solve, even for the most innocent of problems-such as the autonomous linear delay type with further simplifying 

restrictions; this difficulty is largely attributable to the many issues that must be dealt with, two such issues 

being the transcendental nature of the associated characteristic equations and the prescribed class of initial 

functions. 
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