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ABSTRACT: This paper established the convexity, compactness and subspace properties of cores of 

Euclidean targets for single-delay autonomous linear neutral control systems.The paper also revealed that the 

problem of controlling any initial endowment to a prescribed target and holding it there reduces to that of 

controlling the endowment to the core of the target with no further discussion about the problem as soon as this 

core is attained, since the right kind of behavior has been enforced on the initial endowment. The proof of the 

boundedness relied on the notion of asymptotic directions and other convex set properties, while that of the 

closedness appropriated a weak compactness argument. 
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I. INTRODUCTION 
The relationship between cores of targets and Euclidean controllability was introduced by Hajek [1], who 

examined the system , ( ) , (end) ,x Ax p p t P x T    where A is an n n coefficient matrix, ,P the 

constraint set a compact convex non-void subset of the real  n-dimensional Euclidean space ,n
R the target set, 

,T a closed convex non-void subset of ,n
R and : ,p I P admissible controls on ,I a subset of 

[0, ).  R  

    By exploiting the analyticity and non-singularity of the fundamental matrices of the associated homogeneous 

system ,x Ax and using the notion of asymptotic directions and other convex set properties, he established 

that core( )T is bounded if and only if  
1

rank , , , ,


 
 


n

T T T T T
M A M A M n for some m n constant 

matrix, .M  He indicated that the closedness of core( )T could be achieved by using a weak compactness 

argument. 

    Ukwu [2] extended Hajek’s results to a delay control system, with the major contribution being the varying of 

the technique for the boundedness of core( )T due to the singularity of the solution  matrices and certain other 

properties of such matrices. See also [2], Ukwu [3]and Iheagwam [4] for other results on cores. This paper gives 

further results on cores. In the sequel, the following questions are at the heart of the matter: under what 

conditions can a set of initial functions be driven to some prescribed targets in ,n
R and maintained there, 

thereafter by the implementation of some control procedure?, what are the initial endowments (core of target) 

that can be so steered?, is the set of these initial points compact?. These questions are well-posed and are 

applicable in the control of global economic growth, when the main consideration is the issue of possibilities for 

the control of the growth of capital stock from initial endowments to the desired ranges of values of the capital 

stock. It is clear that no firm has unlimited capacity to invest in growth. Thus the initial assets or capital stock 

that can be built up to prescribed levels of growth cannot be too big, and may be compact, indeed. 

 

II. RELEVANT SYSTEM, DEFINITIONS AND  LEMMAS WITH THEIR  STANDING 

HYPOTHESES 
We consider the single-delay neutral autonomous linear control system: 

         

     

1 0 1 ; 0 (1)

, , 0 , 0 (2)

      

   

 x t A x t h A x t A x t h B u t t

x t t t h h
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with initial function   ,0 ,  nC h R defined by: 

            

                  0, [ , 0); 0 (3)      ns g s s h g R where 1 0 1, ,A A A  are 

n n  constant matrices  and B  is an n m  constant matrix.   for     
n

x hR . The space of 

admissible controls is  loc [0, ), : ( ) a.e., [0, ); ,m mL u t U t U     R R a compact , convex set with 

0interior of U  

 Denote this by    L Uloc [ , ),0 . The target set H  is a closed, convex, nonvoid subset of
n

R . 

See Chidume [5] for an exposition on  [0, ), .locL U  The space   ,0 , nC h R  is equipped 

with the topology of uniform convergence. 

It is appropriate at this stage to state some relevant definitions, as well as discuss some preliminary 

notions from convex set theory as they relate to cores of Euclidean targets and then collect the results needed for 

the proofs of the main results. 

 

2.1   Definition of Cores of Targets  

The core of the target set 
n

H R  denoted by core (H) consists of all initial points   00 ng  R , where 

  ,0 ,  
n

C h R  for which there exists an admissible control u such that the solution (response) 

 x t u, ,  of system (1) with 0x   as the initial function, satisfies  , , , for all 0x t u H t   . 

2.2   Definition of Asymptotic Directions of Convex Sets 

Let K  be a closed, convex set in .nR  A vector 
naR  is an asymptotic direction of K  if for each x K  

and all   0 , we have x a K  ; that is, the half-ray issuing from x  in the direction a  lies entirely 

within K . 

 

2.3    Definition of Sets of Asymptotic Directions of Convex Sets 

The set  O K


defined by:                                                         

                                            

                           ( ) : for every 0 and every (4)nO K a x a K x K       R  

denotes the set of asymptotic directions of K . By definition 2.2, it consists of all asymptotic directions of K . 

 

2.4    Lemma on the Convexity of the Set of Asymptotic Directions of a convex set 

 O K


is a convex cone containing the origin. 

Proof 

Let   O Ka


 . Then for every 0and every .x a K x K      Let   0 . Then   ,x a K   

since  0 .Therefore    , for every 0 and everyx a K x K      , 

showing that    ifa O K a O K
 

  . Thus,  O K


 is closed under nonnegative scalar 

multiplication. Therefore  O K


 is a cone.    

Convexity: Let  ,

1 2
and 0 1a a O K 


   . Then 

        1 2 1 2
1 1 1a a K a K a K K K K                  

since , 1, 2
i

a K K i    by the definition of  O K


. Hence    1 2
1 a a O K 


   . This proves 

that  O K


is convex. 
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2.5Lemma on Boundedness of Closed Convex sets, (Hajek, 1974,  p.203) 

A nonempty closed convex set in nK R  is bounded if and only if  zerois its only asymptotic direction; that is 

   0 .O K
   

2.6Lemma on Nonvoid sets  expressed as Direct Sums  

 If a nonvoid set D  is of the form ˆD L E  , where Ê is bounded and L  is a linear subspace of D, then L  is 

the largest linear subspace of D and necessarily coincides with the set of asymptotic directions of D.  Cf. Hajek 

(1974, p.204).  

Further discussions on convex sets may be found in Rockafellar [6]. 

III. DEFINITION OF SOLUTIONS 

Suppose  is a continuous function on [ ,0]h . A solution of (1) through   is a continuous function defined 

on[ , ) h  which coincides with   on [ ,0]h  such that the difference 
1

( ) ( )Y t A Y t h


  is differentiable 

almost everywhere and satisfies (1) for 0.t   
 

3.1   Theorem on Existence and Uniqueness of Solutions of (1)( Dauer and Gahl, [7], p. 26) 

If   is a continuous function on [ ,0]h , then there is a unique solution of (1)  on [ , ) h through  . If 

1 0, A this solution exists on ( , ),   and is unique. 

 

3.2    Representations of Solutions of (1)([7],  pp. 29-30) 

Let ( , , )x t u be the solution of (1) through   with admissible control .u Then: 

0 0

1 1 1( , , ) ( )[ (0) ( )] ( ) ( ) ( ) ( )     

 

         
h h

x t u Y t A h Y t s h A s ds dY t s h A s  

              0

( ) ( ) ( ) (5)

t

Y t s h B s u s ds    

where ( )Y t  is a fundamental matrix of the free part of (1), satisfying: 

                   
; 0

0, 0, (6)


 



nI t
Y t

t
 

1( ) ( ) Y t A Y t h is continuous and satisfies: 

                              1 0 1( ) ( ) ( ) ( ) (7)
d

x t A x t h A x t A x t h
dt

      

except at the points , 0,1,2, jh j  

( )Y t has continuous first derivative on each interval ( ,( 1)), 0,1, ;  jh j j the left- and  right-hand limits 

of ( )Y t exist at each jh , so that ( )Y t is of bounded variation on each compact interval. 

                                   ( ) , (8)btY t ae t R

  

for some 0 anda b R .  ( )Y t satisfies the integral equation:         

   1 0 1

0

( ) ( ) ( ) ( ) , 0 (9)

t

nY t I A Y t h A Y AY h d t        

                                



Cores of euclideantargets  for single-delay autonomous linear neutral control systems 

www.ijmsi.org                                               26 | P a g e  

( )Y t  is analytic on  , ( 1) , 0,1, ,jh j h j   cf., [12]. 

See Hermes and LaSalle [8] for further discussion on ( )Y t . 

In order to generalize the results of the last chapter to neutral systems, the following definition of solutions, 

existence, uniqueness and representation of solutions are appropriate. 

3.3   Definition of Global Euclidean Controllability  

The system (1) is said to be Euclidean controllable if for each  [ , 0], nC h  R defined by:     

                                                                     

                   ( ) ( ), [ , 0), (0) (0) (10)
n

s g s s h g     R  

 and for each 1 ,nx R there exists a 1t  and an admissible control u such that the 

solution(response) ( , , )x t u of (1) satisfies 0 1 1( , ) , and ( ; , ) .x u x t u x     

 
3.4    Definition of Cores of Targets 

The core of the target set ,nH  R denoted core ( H ), consists of all 

 0(0) for [ ,0],n ng C h    R R  satisfying (10), for which there exists an admissible control 

u such that the solution (response) ( , , )x t u  of (1) with initial function  satisfies 

( ; , ) , 0.x t u H t     

IV. LEMMA ON NONVOIDNESS OF CORE(H) 

If 0  H  and 0 U , then 0 core ( H ). Hence core ( H ) is nonvoid. 

Proof 

Choose   0 in ,0 , nC h   R . Then    0 0 and ( ) 0, , 0 .s s h     Choose  0 .u U   

Then u is an admissible control defined by ( ) 0 , [0, ].u s U s t     From (5) we get  x t, ,0 0 0 . If 

0  H , we conclude that 0  core ( H ) and so core ( H ) is nonvoid. 

     The following theorem establishes the convexity and closedness of core ( H ). 

 

4.1    Theorem on Convexity and Closedness of core (H) with respect to system (1) 

 

Under the hypotheses on the control system (1), core ( H ) is convex and closed.  

 

Proof 

The proof will be realized from the convexity of , U  and H  and an application of a Weak Compactness 

argument. 

Convexity 

Let gi

0  core ( H ), i = 1, 2; Then   i ig0 0  for some   , 0 , , 1, 2.n

i C h i   R   

Corresponding to  i  there exist two admissible controls 1 2,u u  and two 

trajectories    x t u x t u, , , , , 1 1 2 2 , such that  x t u Hi i, ,   for all t i 0 12; , . Let 
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0 1  . Then         x t u x t u H, , , ,1 1 2 21    for all t  0 , since H is convex. 

But  

1 1 2 2

0

1 1 1 1 1 1 1

1

0

( , , ) (1 ) ( , , )

( )[ (0) ( )] ( ) ( ) ( ) ( )

( )

h

t

x t u x t u

Y t A h Y t h A d dY t h A

Y t Bu

   

          

 

 



 

        

 





 

0

2 1 2 1 2 1

2

0

(1 ) ( ) [ (0) ( )] (1 ) [ ( ) ( ) ( ) ( )]

(1 ) ( ) (11)

h

t

Y t A h Y t h A d dY t h A

Y t Bu

          

 

 



          

  





 

1 2 1 1 2

0

1 1 2

0

1 1 2

1 2

0

( )[( (1 ) )(0) ( (1 ) )( )]

( ) ( (1 ) )( )

( ) ( (1 ) )( )

( ) ( (1 ) )( ) (12)

h

h

t

Y t A h

Y t h A d

dY t h A d

Y t B u u d

     

     

     

    









      

    

    

   







 

Certainly,     1 21 , 0 , nC h       R , by the convexity of   , 0 , nC h R . Also, 

  u u1 21    ,  by the convexity of L U and . Hence  

       1 21 0    core ( H ); that is   g g1

0

2

01    core ( H ) for any  

g g1

0

2

0,   core ( H ) and 0 1  . So, core ( H ) is convex. 

 

 

Closedness 

 Consider a sequence of points  gk

0

1



 in core ( H ) such that
0 0lim
kk

g g


 . Then, by the definition of core 

( H ), there exist   ,0 , , 1,2,..n

k C h k   R  for which  k kg0 0 .  Let  
1ku

  be an 

appropriate sequence of admissible controls corresponding to  k 1



 for which  x t u Hk k, ,   for all 

0:t  that is,  
1ku

  holds the responses  , ,k kx t u  within .H Now the class of admissible controls 

  is just the closed balls  in   0, ,loc mL  R  of some finite radius r ; hence by Banach-Alaoglu theorem, 

[8] and Knowles [9],   is weak-star compact (denoted w*-compact) and convex. Consequently, there exists a 

subsequence    
11

of
jk k

j
u u

 


 such that u uk

w

j

*

  for some u   .  

Thus:                             

              

0 0

lim ( ) ( ) ( ) ( ) , for 0 (13)
j

t t

k
j

Y t Bu d Y t Bu d t     
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because 1( ) .Y t B L    Let  k
j

j




1

 be a subsequence of  k 1



 corresponding to  uk
j

j




1

 for which  

  00 Core( ).
j jk kg H     Then: 

 

0

( , , ) ( , ,0) ( ) ( ) , for all 0 (14)
j j j j

t

k k k kx t u x t Y t Bu d H t         By 

virtue of the closedness of H , we have: 

            
lim ( , , ) ,  0 (15)

j jk k
j

x t u H t


 
  

 

Therefore:
0

1 1

0

1

0

lim ( )[ (0) ( )] lim ( ) ( )

( ) ( ) lim ( ) ( ) , 0 (16)

j j j

j j

k k k
jj

h

t

k k
j

h

Y t A h Y t h A d

dY t h A Y t Bu d H t

     

     











    

       



 
 

 

But: 

0 0

lim ( ) ( ) ( ) ( ) (17)
j

t t

k
j

Y t Bu d Y t Bu d     


     

and: 

          

  
0

0

lim ( ) (0) ( ) lim (0) ( ) . (18)
j j

t

k k
j j

Y t Y t Y t g 
 

                   

Therefore, 
0 core( ),g H as observed from (16) and the relation 

0lim (0) lim (0) .
jk k

j k
g g g

 
   

 This proves that the limit of any convergent sequence of points in core ( H ) is also in Core( H ); hence 

core ( H ) is closed.  

The next result relates the asymptotic directions of H  to those of core ( H ). 

 

4.2    Lemma  relating the Asymptotic Directions of  H  to those of Core(H) with respect to (1) 

A vector 
naR  is an asymptotic direction of core ( H ) if and only if ( )Y t a  is an asymptotic direction of H .  

Proof 

 Let ( )Y t a  be an asymptotic direction of H  for some vector
naR . Then: 

                        
( ) (19)H Y t a H 

   

for each   0. Take g 0   core ( H ) and a corresponding   , 0 , nC h  R  such 

that ( )0 0 g Let  an admissible control u     hold the response  x t u, ,  within H .  Then:

  
   

0

0

1 1

0

1

0

( , , ) ( )[ ( )] ( ) ( )

( ) ( ) ( ) ( ) , 0 (20)

h

t

h

x t u Y t g A h Y t h A d

dY t h A Y t Bu d H t

     

     









     

       



 

 

Clearly: 
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0 0

0

1 1 1

0

0 0

0

1 1 1

0

( )[ ( )] ( ) ( ) ( ) ( )

( ) ( )

( )[ ( )] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) , (21)

h h

t

h h

t

Y t g a A h Y t h A d dY t h A

Y t Bu d

Y t g A h Y t h A d dY t h A

Y t Bu d Y t a H Y t H H

        

  

       

    

 

 

 

 

        

 

        

     

 



 



 

(by (19) and (20)). We deduce immediately from (21) that g a0   core ( H ), for each  0Hence, a  is 

an asymptotic direction of core ( H ). 

 Conversely suppose 
naR  is an asymptotic direction of core ( H ). Let g 0   core ( H ). Then 

g a0    core ( H ) for each   0. Hence, there exists an admissible control u and a function 

  , 0 , nC h   R  such that the solution  , ,x t u , with     0

0 , , 0x u g a       

satisfies  , , , 0.x t u H t      Therefore we have: 

0

0

1 1

0

1

0

( , , ) ( )[ ( ) ( ) ( ) (22)

( ) ( ) ( ) ( ) , for some ,

h

t

h

x t u Y t g a A h Y t h A d

dY t h A Y t Bu d b b H 

      

     









      

      



 

 

for 0.t  Let 0  ; divide through by   and take the limits of both sides of (22) as   to get: 

0

0

1

0

1

0

1 1

1

lim ( ) lim ( ) lim ( ) ( )

1 1
lim ( ) ( ) lim ( ) ( ) lim (23)

h

t

h

Y t g Y t a Y t h A d

dY t h A Y t Bu d b

  


  

 



   

     
 

  



  



   

     



 

 

Now 
01

lim ( ) 0,Y t g
 

  since
0( )Y t g   is independent of . Also the limit of above integrals is zero since 

the integrals are bounded for fixed ,0 , ( ), ( ), ( ),t t Y t h dY t h Y t          are of bounded 

variation on [0, ]t  and the integrands are integrable. Also 1

1
lim ( ) 0,A h
 


  because ( )h  is finite. 

 Therefore:             

                                                           

0
( ) lim (24)Y t a b


   

 for some b H  .  Let c H  and let   0. We must show that ( ) .c Y t a H   
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If   is fixed and   , then 0 1



   for 0  . Consequently, the convexity of H  implies 

that  1 a c b H
 

   . Now    lim 1 c b H


 
 

     , because H  is closed. Therefore we 

have    limc b H






  . This shows that ( )c Y t a H  , by (24). It follows immediately from 

definition 2.2 that ( )Y t a  is an asymptotic direction of H , as required.  

We proceed to establish another useful property of core ( H ). 

 

4.3   Theorem on useful properties of Core(H) with respect to system (1) 

Core (core ( H )) = core ( H ) 

Proof 

Let 
0g   core ( H ). Then,   00 g   for some   , 0 , nC h  R . Thus there exists an admissible 

control u    such that  x t u H, ,   for all 0.t   Fix a time t  0 ; then  x ut  ,  serves as the 

initial function for a response starting at t  with the same control u  and with the initial 

point      x u x t u Ht  , , ,0   . Now     x t t x u u x t u Ht, , , , , ,    for all t t  0 , 

showing that    x ut  , 0  core ( H );  that is,  x t u, ,   core ( H ). 

    Apply the definition of core to the new target core ( H ), to deduce that   0   core (core ( H )). But 

  0 0 g  is arbitrary in core ( H ). Therefore core ( H )  core (core ( H )). The reverse inclusion 

core(core( )) core( )H H is immediate. Therefore, core (core ( H )) = core ( H ).  

 The implicationof above result is that the problem of controlling any initial endowment to a prescribed 

target and holding it there reduces to that of controlling the endowment to the core of the target with no further 

discussion about the problem as soon as this core is attained, since the right kind of behavior has been enforced 

on the initial endowment. 

 Note that if the initial endowment,  is controlled to a point x on the target ,H at time ,t  

by an admissible control ,u there is no assurance that ( , ( , ), )tx t x u u will remain in ,H for ,t t  

unless x is in core ( H ). 

 

4.4    Theorem on Core(H) as a Subspace 

Consider the control system (1) with its standing hypotheses. Let the target set H   be of the form. 

H L D  , where  : 0nL x M x  R  for some m n  matrix ,M  and some bounded, convex 

subset D  of  
n

R   with 0 D . Assume that 0  U  and 0  H . Then  

 
0

(core( )) ( ) : ( ) 0 ,
t

O H x O H MY t x 



    

and it is the largest subspace of ( )O H
trapped in ( )O H

under the map ( )Y t , for each 0.t   

Proof 

By lemma (2.6), ( ) .O H L   If (core( )),x O H  then by lemma (4.2), ( ) ( )Y t x O H  for 

0.t  Hence: 

                            

( ) 0, (25)MY t x 
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for 0.t  In particular, at 0,t  we have ( ) (0) ,nY t Y I  yielding 0;M x  this shows:   

                                   ( ). (26)x H   

Clearly (25) and (26) imply that: 

       
 ( ) : ( ) 0 , 0. (27)x y H MY t y t    

 

 Since x is arbitrary in (core( )),O H
we deduce immediately:   

                                          
0

(core( )) ( ) : ( ) 0 . (28)
t

H y H MY t y 



    

For the proof of the reverse inclusion, let  0 ( ) : ( ) 0 , 0.x y H MY t y t      Then 

( ) 0, 0.MY t x t    Hence ( ) ( ), 0.Y t x O H t    The result (core( ))x O H  is immediate from 

lemma 4.2. We deduce from the arbitrariness 

of  
0

in ( ) : ( ) 0 ,
t

x y O H MY t y



                                             

 
0

( ) : ( ) 0 (core( )) (29)
t

y H MY t y H  



    

Hence:                  

                                  

                  

 
0

(core( )) ( ) : ( ) 0 . (30)
t

H x H MY t x 



    

That   coreO H
 is a subspace follows from the fact that if   , corex y O H  

and , , then ( ) ,x y O H L       R L  being a linear space.  So                      

  ( ) ( ) ( ) .0 .0 0,MY t x y MY t MY t                                                                

since x y L,  . Therefore   corex y O H    , showing that   coreO H
 is a subspace of 

 O H
.To show that   coreO H

 is trapped in  O H
 under ( )Y t  for each t  0, let 

 core(x O H . Then ( ) ( )Y t x O H , by lemma 4.2. So  0 ( ) : ( ) 0x y H MY t y    and 

   core( ) ( ) : ( ) ( ) .O H V O H Y t V O H       Hence   coreO H
 is trapped in  O H

 

under the map ( )t Y t  for each t  0.  We know that , ( ) .x y O H L        R  

   If  W is another subspace of  O H
 trapped in  O H

 under the map ( )t Y t  for each t  0, then 

( ) ( )Y t w O H  for all w W . Hence   corew O H , by definition 2.3 and lemma 4.2. The 

conclusion   coreW O H  is immediate. This completes the proof of the theorem. 

V. CONCLUSION 
This article investigated some subspace and topological properties of cores of targets for single-delay 

autonomous linear control systems, effectively extending the relevant results in [1] and [2] with economic 

interpretations, thereby providing a useful tool for the investigation and interpretation of Euclidean 

controllability. 
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