
International Journal of Engineering Science and Computing, June 2016 7929 http://ijesc.org/

DOI 10.4010/2016.1860

ISSN 2321 3361 © 2016 IJESC

C++ Codes for the Implementation of Determining and

Controllability Matrices, Cardinality and Controllability Rank

Conditions for A Class of Double - Delay Control Systems

Ukwu Chukwunenye1, Obiorah Mmachi2

Department of Mathematics1, Department of Computer Science2

University of Jos, P.M.B. 2084, Jos, Plateau State, Nigeria

cukwu@hotmail.com1, obiorahm@gmail.com2

Abstract:
As dictated by practical exigencies, this research article designed and developed extensive C++ codes for the implementation of

determining matrices, controllability matrices, cardinality and controllability rank conditions, for a class of double - delay control

systems, thereby averting the prohibitive manual computations associated with such mathematical objects. With these results, the
interrogation of the controllability disposition of this class of functional differential control systems can be accomplished with

astounding swiftness, in turn, providing the much desired implementation paradigm shift.

Keywords: C++ codes, Cardinality, Determining matrices, Euclidean controllability, Computational feasibility, Electronic

implementation, Permutations, Double-delay control systems.

1. INTRODUCTION

Determining matrices derive their importance from the fact

that they constitute the optimal platform for the determination

of Euclidean controllability and compactness of cores of

Euclidean targets [1], [2], [3] and [4]. In sharp contrast to
determining matrices, the use of indices of control systems on

the one hand and the application of controllability Grammians

on the other, for the investigation of the Euclidean

controllability of systems can at the very best be quite

computationally challenging and at the worst, mathematically

intractable [5]. Thus, determining matrices are beautiful brides

for the interrogation of the controllability disposition of delay

control systems [4]. However, up-to-date review of literature

on this subject reveals that until [6], there had been no result

on the structure of determining matrices for double-delay

systems. This could be attributed to the severe difficulty in
identifying recognizable mathematical patterns needed for

inductive proof. Furthermore, thus far, there has been no

reported investigation on the computational feasibility of

determining matrices in general. By an appeal to the

multinomial distribution, the cardinality of the determining

matrix, (),
k

Q jh in [7] can be seen to be

2

0

!
, for 0 0, 0,

()!(2)! !

j

r

k
j k h

r k j j r r

where . denotes the greatest integer function (the floor

function). In particular the cardinality leaps from 25,653 for

11, j k to 1,105,350,729, for 21. j k How in the

world could one manually handle over one billion additions,

even for a moderately-sized practical problem! Clearly the

curse of dimensionality cannot be mitigated in manual

computations of determining matrices; needless to say, they

are inherently computationally intractable.

Thus, this paper makes a positive contribution to knowledge

by overcoming the manual computational complexity through

the automation of the determining matrices, controllability

matrices, cardinality and controllability rank conditions on the

C++ platform. It is noteworthy that due to the limitations in
the functionality of C++, it was initially impossible to obtain

the cardinalities of ()
k

Q jh for 23. j k C++ has overflow

problems for !i when 23i . The above limitations were

eventually overcome by the incorporation of a C++ Boost

Library into Visual Studio 2012, [8]. This guaranteed the

computational feasibility of ()
k

Q jh for arbitrary and ,j k

and hence the suitability and appropriateness of ()
k

Q jh even

for large-scale applications. Another challenge encountered

was the problem associated with generating extensive and

well-tested code for the implementation of ranks of

controllability matrices. This was eventually resolved through

the inclusion of Armadillo Library [9]. This Library has well-

tested and robust functionality for obtaining the ranks of

matrices of any structure. Thus, the major impediments in this

area of acute research need have been eliminated.

2. MATERIALS AND METHODS

2.1 Identification of Work-Based Double-Delay

Autonomous Control System

We consider the double-delay autonomous control system

0 1 2

2 ; 0 (1)

, 2 , 0 , 0 (2)

x t A x t A x t h A x t h B u t t

x t t t h h

where
0 1 2
, ,A A A are n n constant matrices with real

entries, B is an n m constant matrix with real entries. The

Research Article Volume 6 Issue No. 6

International Journal of Engineering Science and Computing, June 2016 7930 http://ijesc.org/

initial function is in 2 , 0 ,
n

C h R , the space of

continuous functions from [2 , 0] h into the real n-dimension

Euclidean space,
n

R with norm defined by

2 , 0

sup

t h

t , (the sup norm). The control u is in the

space 1
0, ,

n
L t R , the space of essentially bounded

measurable functions taking 1
0, t into

n
R with norm

1[0,]

sup ()

t t

ess u t .

Any control 1
0, ,

n
u L t R will be referred to as an

admissible control. For full discussion on the spaces

1
and (or)

p p

p
C L L , {1,2,..., }p , see [10], [11] and

[12].

Let 0 1 2, ,r r r be nonnegative integers and let
 0 1 20 ,1 ,2()r r r

P

denote the

0 21
times timestimes

set of all permutati the permutations of tons of he objects 0,1, 2 in0, 0, 0 1,1, 1 2, 2, 2 which:
r rr

i

{0,1, 2}appears times, .
i

ir

The results to be automated are the following:

2.2 Theorem 1: The structure of ()
k

Q jh , [7]

0

.(0) , the identity matrix of order
n

Q I n

1

1 0(),1(2),2()

2

0 (, ,)

For 0 , , integers, 0,

()

k

k r k j j r r

k v v

j

r v v P

j k j k k

Q jh A A

1

1 0(),1(2 2),2()

2

2

0 (, ,)

1 2

For 1, , integers,

()

2 1

,

0,

k

k r k j r r j k

v v
k

k j

r v v P

j k

j k j k

A AQ jh

j k

Table 1: Computing Complexity Table For ()
k

Q jh

The complexity table for (),kQ jh k j cannot be

obtained by swapping and ,j k

([]) and () do not have the same complexity, for any positive integer, .k k pQ k p h Q kh p

2.3 Theorem 2: Controllability Matrix for

Controllability investigation via rank conditions

The controllability matrix is given by

an

 1 1by 1 min , 1 concatenated matrix of 1 min , 1

t t
n mn n n n

h h

 matrix product objects, each of dimension Here,

 . denotes the least integer function (the ceiling

function).

in (), .kQ jh j k

 1 0 1 1 1
ˆ () () , () , , () : 0, , ,min{ ,(1) } ,n nQ t Q s B Q s B Q s B s h t n h

by .n m

 Number of nonzero terms = Number of nonzero

products = Cardinality of ().kQ jh

Number of

additions

Size of permutation

 = sum of powers of the siA

(),

0 0

kQ jh

j k

2

0

!

()!(2)! !

j

r

k

r k j j r r

 2

j

 k

(),

1 2

kQ jh

k j k

2

2

0

!

!(2 2)!()!

k j

r

k

r k j r r j k

2

2

k j

 k

International Journal of Engineering Science and Computing, June 2016 7931 http://ijesc.org/

2.4 Rank Condition for Controllability

System (1) is Euclidean controllable on the interval
1

[0,]t if and only if
1

ˆrank () . n
Q t n

2.5 Visual C
++

 Implementation Codes

2.5.1 Source Code for the Header File Q.h (C:\Users\ENGR\Desktop\ProjectQarma\Q.h)

#ifndef Q_1

#define Q_1

#include "math.h"

#include "QException.h"

#include "algorithm"

#include <armadillo>

#include <string>

#include <fstream>

#include <boost\multiprecision\cpp_int.hpp>

using boost::multiprecision::cpp_int;

using namespace arma;
using namespace std;

class Q

{

 private:

 int n,m ,r, k, j,summation;

 int beta, h;

 string a1mat, a2mat, a3mat, bmat, outputmat;

 mat *A[3] ;

 mat *B;

 mat *C;

 mat *SS;

 //vector<vector<vector<int> > >J;

 mat J;

 //mat J replaces vector<vector<vector<int> > >J; and we use the join function

 //Matrix SS;

 int A0appears;

 int A1appears;

 int A2appears;

 ofstream outputfile;

 public:
 Q(int n1, int m1, int beta1 = 1, string matA1="A1.mat", string matA2="A2.mat", string matA3="A3.mat", string

outputmat1="fstream.dat", string matB="B.mat", int h1 = 1, int k1=0, int j1=0);

 void timesToSum(int j1, int k1);

 void Matrixappears();

 void Summation(int j1, int k1);

 void Summation2(int j1, int k1);

 mat* SumofPermutations(int A0a = 0, int A1a = 0,int A2a = 0);

 void PopulateQ(int a,int b, int c);

 void printJ();

 cpp_int factorial(int n);

 void Cardinality(int j2, int k2);

 void Cardinality0(int j3, int k3);
 ~Q();

};

#endif

2.5.2 Source Code for the Implementation File Q.cpp (C:\Users\ENGR\Desktop\ProjectQarma\ Q.cpp)

#include "Q.h"

#include <cmath>

/*Constructor for Q*/

 Q::Q(int n1, int m1, int beta1, string matA1, string matA2, string matA3, string outputmat1, string matB, int h1, int k1, int

j1):n(n1),m(m1),beta(beta1),a1mat(matA1),a2mat(matA2),a3mat(matA3),outputmat(outputmat1),bmat(matB),h(h1),k(k1),j(j1){}

International Journal of Engineering Science and Computing, June 2016 7932 http://ijesc.org/

 /*times to sum chooses the range for r; r ranges from zero to summation based on the conditions below*/

 void Q::timesToSum(int j1, int k1)

 {
 j = j1;

 k = k1;

 if ((j>=0) && (j <= k))

 {

 summation = floor(j/2);

 }

 else if((j>=k) && (k >= 1))

 {

 summation = floor((2*k-j)/2);

 }

 else

 {
 }

 }

 /*Matrix appears calculates the number of times each matrix appears */

 void Q::Matrixappears()

 {

 if ((j>=0) && (j <= k))

 {

 A0appears = r +k - j;

 A1appears = j - 2*r;

 A2appears = r;
 }

 else if((j>=k) && (k >= 1))

 {

 A0appears = r;

 A1appears = 2*k-j - 2*r;

 A2appears = r +j - k;

 }

 else

 {

 }

 if (A0appears < 0 || A1appears < 0 || A2appears <0)

 throw(QlessThanZero("One of the matrices is to be permuted for a negative number of times"));

 }

 /*Populates Qs matrices*/

 void Q::PopulateQ(int a, int b, int c)

 {

 A[0] = new mat(n,m);

 A[1] = new mat(n,m);

 A[2] = new mat(n,m);

 B = new mat(m,beta);

 //Populate matrix

 A[0]->load(a1mat);
 A[1]->load(a2mat);

 A[2]->load(a3mat);

 B->load(bmat);

 //Prepare output files

 outputfile.open(outputmat.c_str());

 outputfile<<"FIXED PARAMETER MATRICES"<<endl

 <<"Matrix A["<<a<<"]"<<endl

 <<*A[0]<<endl

 <<"Matrix A["<<b<<"]"<<endl

 <<*A[1]<<endl

 <<"Matrix A["<<c<<"]"<<endl
 <<*A[2]<<endl

 <<"Matrix B"<<endl

 <<*B<<endl

 <<"DETERMINING MATRICES FOR THE VARIABLES J AND K"<<endl;

 }

International Journal of Engineering Science and Computing, June 2016 7933 http://ijesc.org/

 void Q::Summation2(int j1, int k1)

 {

 j = j1;
 k = k1;

 SS = new mat(n,m);

 mat *G = new mat(m ,beta);

 if (k == 0)

 {

 if(j == 0)

 {

 SS->eye();

 }

 else

 {
 *SS = *(A[0]);

 for(int i = 0; i < j-1; i++)

 {

 *SS = *SS * *(A[0]);

 }

 }

 }

 else if((j == 0) && (k!=0))

 {

 *SS = *(A[1]) ;

 for(int i = 0; i < k-1; i++)
 {

 *SS = *SS * *(A[1]);

 }

 }

 else if((k >= j) && (j>=1))

 {

 A0appears = j;

 A1appears = k;

 A2appears = 0;

 *SS = *(SumofPermutations(A0appears,A1appears, A2appears));

 A0appears = 0;
 A1appears = k-j;

 A2appears = j;

 *SS = *SS + *(SumofPermutations(A0appears,A1appears, A2appears));

 if (j >= 2)

 {

 for (r = 1; r <= j-1; r++)

 {

 A0appears = r;

 A1appears = r + k -j;

 A2appears = j -r;

 *SS = *SS + *(SumofPermutations(A0appears,A1appears, A2appears));
 }

 }

 }

 else if((j >= k) &&(k>=1))

 {

 A0appears = j;

 A1appears = k;

 A2appears = 0;

 *SS = *(SumofPermutations(A0appears,A1appears, A2appears));

 A0appears = j - k;

 A1appears = 0;

 A2appears = k;
 *SS = *SS + *(SumofPermutations(A0appears,A1appears, A2appears));

 if(k >= 2)

 {

 for (r = 1; r <= k-1; r++)

International Journal of Engineering Science and Computing, June 2016 7934 http://ijesc.org/

 {

 A0appears = r + j -k;

 A1appears = r;
 A2appears = k - r;

 *SS = *SS + *(SumofPermutations(A0appears,A1appears, A2appears));

 }

 }

 }

 cout << fixed << fpreset;

 cout <<"for k = "<<k<<" and j = "<<j <<"\n ";

 *G = *SS * *B;

 J = join_rows(J,*G);

 cout <<*G;

 //Continue Outputstream

 outputfile<<"for k = "<<k<<" and j = "<<j <<endl
 <<*G<<endl;

 }

 void Q::Summation(int j1, int k1)

 {

 j = j1;

 k = k1;

 SS = new mat(n,m);

 mat *G = new mat(m,beta);

 mat *T = new mat(n,m);

 if (k == 0)
 {

 if (j==0)

 {

 SS->eye();

 }

 else

 {

 SS->zeros();

 }

 }

 else if(j >= 2*k + 1)

 {
 SS->zeros();

 }

 else

 {

 SS->zeros();

 for (int r = 0; r <= summation; r++)

 {

 if ((j>=0) && (j <= k))

 {

 A0appears = r +k - j;

 A1appears = j - 2*r;
 A2appears = r;

 }

 else if((j>=k) && (k >= 1))

 {

 A0appears = r;

 A1appears = 2*k-j - 2*r;

 A2appears = r +j - k;

 }

 else

 {

 A0appears = 0;

 A1appears = 0;
 A2appears = 0;

 }

 if (A0appears < 0 || A1appears < 0 || A2appears <0)

 throw(QlessThanZero("One of the matrices is to be permuted for a negative number of times"));

 *T = *(SumofPermutations(A0appears,A1appears, A2appears));

International Journal of Engineering Science and Computing, June 2016 7935 http://ijesc.org/

 *SS = *SS + *T;

 }//end for

 }//end if
 cout <<"for k = "<<k<<"and j = "<<j <<"\n ";

 *G = *SS * *B;

 J = join_rows(J,*G);

 cout <<*G;

 //Continue Outputstream

 outputfile<<"for k = "<<k<<" and j = "<<j <<endl

 <<*G<<endl;

}

 mat* Q::SumofPermutations(int A0a, int A1a,int A2a)

 {

 int TotalObjects = A0a +A1a + A2a;
 int CountObjects = 0;

 mat* C = new mat(n,m);

 //C is initialized to the identity matrix

 mat* S = new mat(n,m);//Sum matrix; we initialize to zero

 S->zeros();

 vector<int> MatricestoPermute(TotalObjects);

 for(int i = 0; i < A0a; i++)

 {

 MatricestoPermute[CountObjects] = 0;

 CountObjects++;

 }
 for(int i = 0; i < A1a; i++)

 {

 MatricestoPermute[CountObjects] = 1;

 CountObjects++;

 }

 for(int i = 0; i <A2a; i++)

 {

 MatricestoPermute[CountObjects] = 2;

 CountObjects++;

 }

 for(int i = 0; i < TotalObjects; i++)

 {
 cout<<" matrix:" <<MatricestoPermute[i]<<"\n";

 }

 cout <<"the total number of objects:"<<TotalObjects<<"\n";

 do

 {

 //We multiply each matrix with a for loop

 C->eye();

 for (int i = 0; i < TotalObjects; i++)

 {

 *C = (*C)*(*(A[MatricestoPermute[i]]));

 }
 *S = *S + *C;

}while(next_permutation(&MatricestoPermute[0],&MatricestoPermute[TotalObjects]));

 return S;

 }

 void Q::printJ()

 {

 cout<< J<<"\n";

 cout<<"The rank of the above matrix is "<<arma::rank(J);

 J.save("Newmat.mat",raw_ascii);

 //Place output matrix in output file

 outputfile<<"THE IMPLEMENTATION OF RANK CONDITION FOR THE CONCATENATED

MATRICES"<<endl
 <<" "<<endl

 <<J<< endl

 <<"THE RANK FOR THE ABOVE MATRIX IS "<<arma::rank(J)<<endl;

 outputfile.close();

 }

International Journal of Engineering Science and Computing, June 2016 7936 http://ijesc.org/

 cpp_int Q::factorial(int n)

 {

 if ((n==0) || (n==1))
 {

 return 1;

 }

 else

 return n * factorial(n -1);

 }

 void Q::Cardinality(int j2, int k2)

 {

 outputfile.open(outputmat.c_str());

 j = j2;

 k = k2;

 cpp_int a , b, c;
 c = 0;

 if (k == 0)

 {

 if(j == 0)

 {

 a = 1;b = 0;

 }

 else

 {

 a = 1; b = 0;

 }
 }

 else if((j == 0) && (k!=0))

 {

 a = 1;b =0;

 }

 else if((j >= k) && (k>=1))

 {

 a = factorial(j+k)/(factorial(j)*factorial(k));

 b = factorial(j)/(factorial(k)*factorial(j-k));

 if (k >=2)

 {

 for(int r = 1; r <= (k-1); r++)
 c = c + factorial(j+r)/(factorial(r +j -k)* factorial(r)*factorial(k - r));

 }

 }

 else if((k >= j) &&(j>=1))

 {

 a = factorial(j+k)/(factorial(j)*factorial(k));

 b = factorial(k)/(factorial(j)*factorial(k-j));

 if (j >=2)

 {

 for(int r = 1; r <= (j-1); r++)

 c = c + factorial(k+r)/(factorial(r +k -j)* factorial(r)*factorial(j - r));
 }

 }

 outputfile<<"For j = "<<j<<" and k = "<<k<<endl

 <<"CARDINALITY = "<<a +b+c <<endl

 <<" "<<endl;

 cout<<"\n"<<"\tFor j = "<<j<<" and k = "<<k<<endl

 <<"\n"<<"\tCARDINALITY = "<<a +b+c <<endl

 <<" "<<endl;

 }

 void Q::Cardinality0(int j3, int k3)

 {

 outputfile.open(outputmat.c_str());
 j = j3;

 k = k3;

 cpp_int a = 0;

 if (k == 0)

International Journal of Engineering Science and Computing, June 2016 7937 http://ijesc.org/

 {

 if (j==0)

 {
 a=1;

 }

 else

 {

 a=0;

 }

 }

 else if(j >= 2*k + 1)

 {

 a = 0;

 }

 else
 {

 for (int r = 0; r <= summation; r++)

 {

 if ((j>=0) && (j <= k))

 {

 a = a + factorial(k)/(factorial(r + k-j)*factorial(j-2*r)*factorial(r));

 }

 else if((j>=k) && (k >= 1))

 {

 a = a + factorial(k)/(factorial(r + j-k)*factorial(2*k - j-2*r)*factorial(r));

 }
 }//end for

 }//end if

 outputfile<<"\n\nFor j = "<<j<<"and k = "<<k<<endl

 <<"CARDINALITY = "<<a <<endl

 <<" "<<endl;

 cout<<"\n"<<"\tFor j = "<<j<<" and k = "<<k<<endl

 <<"\n"<<"\tCARDINALITY = "<<a <<endl

 <<" "<<endl;

}

Q::~Q()

{

 for (int i = 0; i < 3; i++)
 {

 delete A[i];

 }

 delete SS;

 delete B;

 delete C;

}

2.5.3 QException.h: Header file

#ifndef QEXCEPTION

#define QEXCEPTION
#include <iostream>

#include <string>

using namespace std;

class QException

{

 private:

 std::string errmessage;

 public:

 QException(const std::string& mssg);

 std::string getmssg();

};

class QlessThanZero: public QException

{

 public:

 QlessThanZero(const std::string& mssg);

International Journal of Engineering Science and Computing, June 2016 7938 http://ijesc.org/

};

2.5.4 QException.h: Header file

class QLOEZero: public QException

{

 public:

 QLOEZero(const string& mssg);

};

class QUnEqualSizedMatrix: public QException

{

 public:

 QUnEqualSizedMatrix(const string& mssg);

};

class QUnusualEntry: public QException

{

 public:

 QUnusualEntry(const string& mssg);

};

#endif

2.5.5 QException.cpp

#include "QException.h"

 QException::QException(const std::string& mssg): errmessage(mssg){}

 string QException::getmssg()

 {

 return errmessage;

 }

 QlessThanZero::QlessThanZero(const string& mssg): QException(mssg){}

 QLOEZero::QLOEZero(const string& mssg): QException(mssg){}

 QUnEqualSizedMatrix::QUnEqualSizedMatrix(const string& mssg): QException(mssg){}

 QUnusualEntry::QUnusualEntry(const string& mssg): QException(mssg){}

2.5.6 main.cpp

#include <cstdlib>

#include <typeinfo>

#include <iostream>

#include "Q.h"

#include "QException.h"

using namespace std;
string A1mat, A2mat,A3mat, Bmat, Fstream;

int m, n;

void checkType(int Qvariable)

{

 if ((typeid(Qvariable) != typeid(int))&&(typeid(Qvariable) != typeid(float)))

 {

 throw(QUnusualEntry("This is an unexpected entry"));

 }

}

void NameFixedParameterMatrix(int a,int b, int c)

{

 cout<<"Enter Matrix "<<a<<" file name: ";
 cin>>A1mat;

 cout<<"Enter Matrix "<<b<<" file name: ";

 cin>>A2mat;

 cout<<"Enter Matrix "<<c<<" file name: ";

 cin>>A3mat;

 cout<<"Enter Matrix B file name: ";

International Journal of Engineering Science and Computing, June 2016 7939 http://ijesc.org/

 cin>>Bmat;

 cout<<"Enter Output Matrix file name: ";

 cin>>Fstream;
 if (m<= 0 ||n <=0)

 throw (QlessThanZero("the column or row size is less than zero"));

 if (m != n)

 throw (QUnEqualSizedMatrix("Unequal column and row size"));

}

int main(int argc, char *argv[])

{

 try

 {

 int Bm,k,choose;

 float h,t1;

cout<<"WELCOME TO VISUAL C++ IMPLEMENTATION OF DETERMINING MATRICES";
 cout<<"\n FOR HEREDITARY SYSTEMS AND RELATED PROBLEMS \n";

 cout<<"** \n";

 cout<<"\n ";

 cout <<"Enter 1 for Controllability Matrices and Ranks (Double-Delay Systems) \n\n";

 cout <<" Enter 2 for Cardinalities of Determining Matrices (Double-Delay Systems)\n";

 cout<<"\n\t:";cin >>choose;

 Q *firstQ;

 Q *Q1= new Q(3,3);

 int a,b;

 if (choose == 1)

 {
 checkType(choose);

 cout << "Please enter the number of rows for A_matices: ";

 cin >> n;

 checkType(n);

 cout << "Please enter the number of columns for A_matrices: ";

 cin >> m;

 checkType(m);

 cout << "Please enter the number of columns for matrix B: ";

 cin >>Bm;

 checkType(Bm);

 cout << "Please enter a value for t1: ";

 cin >>t1;
 checkType(t1);

 cout << "Please enter a value for h: ";

 cin >>h;

 checkType(h);

 }

 else if(choose ==2)

 {

 cout<<" Enter a value for j : "<<"\t";

 cin>>a;

 cout<<"\n "<<"Enter a value for k : \t";

 cin>>b;
 cout<<"\n"<< " Factorials 0 t0 40:\n \n";

 }

 switch (choose)

 {

 case 1:

 NameFixedParameterMatrix(0,1,2);

 firstQ = new Q(n,m,Bm,A1mat,A2mat,A3mat,Fstream,Bmat);

 firstQ->PopulateQ(0,1,2);

 for (int j = 0; ((j*h < t1) && (j<=n-1)); j++)

 {

 for (int k = 0; k <= (n - 1); k++)

 {
 firstQ->timesToSum(j,k);

 firstQ->Summation(j,k);

 //firstQ->Cardinality0(j,k);

 }

 }

International Journal of Engineering Science and Computing, June 2016 7940 http://ijesc.org/

 firstQ->printJ();

 break;

 case 2:
 cout<<"\n" <<"\t"<<"i"<<"\t"<<"i!"<<"\n";//Factorials 0 to 40 and Cardinality for Double-

Delay System

 for (int i = 0; i <= 40; i++)

 {

 cout<<"\n"<<"\t"<<i<<"\t"<<Q1->factorial(i)<<"\n";

 }

 Q1->timesToSum(a,b);

 Q1->Cardinality0(a,b);

 break;

 }

 }

 catch(QlessThanZero& error)
 {

 cout <<error.getmssg();

 }

 catch(QLOEZero& error)

 {

 cout <<error.getmssg();

 }

 catch(QUnEqualSizedMatrix& error)

 {

 cout <<error.getmssg();

 }
 catch(QUnusualEntry& error)

 {

 cout<<error.getmssg();

 }

 // system("PAUSE");

 // return EXIT_SUCCESS;*/

 return 0;

}

Excellent sources of information on C++ programming include Hubbard (1996), Cohoon & Davidson (2003), D’Orazio (2004) and

Deitel & Deitel (2011).

3. RESULTS AND DISCUSSIONS

3.1 Illustration of Electronic C++ Implementation of Determining matrices, Controllability Matrix and Controllability

Rank Condition for System (1)

Then,

The components
0 0

0 0

() (2) 0 0

0 0

Q h Q h do not affect the rank, and hence those four columns may be deleted, reducing

3
ˆ (3)Q to the following 3 by 14 matrix:

1 1 6 3 20 10 4 2 38 25 4 2 48 33

2 1 2 1 2 1 8 7 48 27 5 4 53 34

1 2 10 5 38 19 0 0 46 32 4 5 49 32

of rank 3.

0 1 2 1

1 2 1 1 1 1 1 1 1 1 1

Let 0 1 0 , 1 2 3 , 1 1 2 , 2 1 , 3, 0.5.

2 3 2 1 1 1 0 1 2 1 2

A A A B t h

 3 0 1 2 1 2 1 2

2

0 0 1 2 1 2

ˆrank (3) rank (0) , (0) , (0) , () , () , (2) , (2)

rank , , , () , () , (2) , (2) .

Q Q B Q B Q B Q h B Q h B Q h B Q h B

B A B A B Q h B Q h B Q h B Q h B

International Journal of Engineering Science and Computing, June 2016 7941 http://ijesc.org/

4. CONCLUSION

The article addressed the issue of computational feasibility

and large–scale industrial applicability of determining
matrices and related concepts and pioneered the

implementation of the determining matrices, controllability

matrices, cardinality and controllability rank conditions for a

class of double-delay control systems, on the C++ platform,

followed with an illustrative example. The automation of the

results has implicitly eliminated all computational and

implementation constraints and has placed the generally

neglected implementation aspect of mathematical results on

the front burner.

REFERENCES
[1] Gabasov, R. & Kirillova, F. The qualitative theory of

optimal processes. Marcel Dekker Inc., New York,

1976.

[2] Ukwu, C. Euclidean controllability and cores of

Euclidean targets for differential difference

systems. Master of Science Thesis in Applied Math.

 with O.R. (Unpublished), North Carolina State

University, Raleigh, N. C. U.S.A. 1992.

[3] Ukwu, C. An exposition on Cores and Controllability of
differential difference systems, ABACUS. 24(2),

276-285, 1996.

[4] Ukwu, Chukwunenye. Controllability, Cores of Targets

and matrix structures of certain classes of functional

differential systems. Ph.D. Thesis in

Mathematics. (Unpublished), University of Jos, Jos,

Plateau State, Nigeria, 2015.

[5] Ukwu, C. & E.J.D. Garba (2014a). A derivation of an

optimal expression for the index of control systems

matrices for single – delay differential systems.
Journal of Mathematical Sciences. 25(1), 2014.

[6] Ukwu Chukwunenye (2014c). The structure of

determining matrices for single-delay autonomous

linear neutral control systems. International

Journal of Mathematics and Statistics Invention

(IJMSI). 2(3), 31 – 47, 2014.

[7] Ukwu Chukwunenye (2014b). The structure of

determining matrices for a class of double delay

control systems. International Journal of
Mathematics and Statistics Invention (IJMSI). 2(3),

14–30, 2014.

[8] “Boost C++ Libraries Release 1.54.0: An Open Source

C++ Software, Boost, Beman Dawes, Rene

Rivera”, 2008.

 [9] Cohoon J. P. & Davidson J. W. C++ Program design:

An introduction to programming and object-

oriented design, third edition. 3rd edition, Tata

McGraw–Hill, New Delhi, 2003.

[10] Chidume, C. An Introduction to Metric Spaces. The

Abdus Salam, International Centre for Theoretical

Physics, Trieste, Italy, 2003.

[11] Chidume, C. Applicable Functional Analysis. The

Abdus Salam, International Centre for Theoretical

Physics, Trieste, Italy, 2007.

[13] Hubbard, J.R. Theory and Problems of programming

with C++. Schaum’s Outline Series, McGraw-Hill,

New York, 1996.

[14] Conrad Sanderson. Armadillo: An Open Source C++

Linear Algebra Library for Fast Prototyping and

Computationally Intensive Experiments. Technical

Report, NICTA, 2010.

[15] D’Orazio B. T. Programming in C++: Lessons and

Applications. McGraw-Hill, New York, 2004.

[16] Deitel P. & Deitel H. C++: How to program, Late

objects version. 7th Ed. Pearson International

edition, New Jersey, 2011.

