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ABSTRACT 
 
Aim: The aim of this paper is to design and automate optimal policy prescriptions and returns for a 
time perspective class of machine replacement problems with pertinent dynamic data. 
Methodology: The aim was achieved by the exploitation of the structure of the states in time-
perspective dynamic programming recursions and the coding functionality in Microsoft Excel.  
Results: The paper designed and fully automated the solution templates for the determination of 
the optimal time replacement policies in machine replacement problems, with pertinent data given 
as dynamic functions of new machine purchase year and machine age.  
Conclusion: The automation of these templates obviates the need for manual inputs of the states 
and stage numbering as well as the inherent tedious and prohibitive manual computations 
associated with dynamic programming formulations and may be optimally appropriated for 
sensitivity analyses on such model, ensuring that problems that could take days to solve are solved 
in a matter of just a few minutes. 
 

 
Keywords:  Dynamic programming recursions; excel solution templates; full automation; machine 

replacement; pertinent dynamic data; time optimal policy. 
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1. INTRODUCTION 
 
Consider the problem of researching an optimal 
Machine Replacement policy over an n-period 
planning horizon. At the start of each year a 
decision is made whether to keep the machine in 
service an extra year or to replace it with a new 
one at some salvage value. As remarked by 
Taha [1], “the determination of the feasible 
values for the age of the machine at each stage 
is somewhat tricky”. The latter went on to obtain 
the optimal replacement ages using network 
diagrammatic approach, with machine ages on 
the vertical axis and decision years on the 
horizontal axis. In an alternative time perspective 
approach, Winston [2] initiated the determination 
process for the optimal replacement time with 
network diagrams consisting of upper half-circles 
on the horizontal axis, initiating from each 
feasible time of the planning horizon and 
terminating at feasible times, with the length of 
successive transition times at most, the 
maximum operational age of the machine. 
Sequel to this, Winston [2] formulated dynamic 
recursions as functions of the decision times, the 
corresponding feasible transition times, the 
problem data and the cash-flow profile. 
Unfortunately network diagrams are unwieldy, 
cumbersome and prone to errors, especially for 
large problem instances; consequently the 
integrity of the desired optimal policies may be 
compromised. In what followed, Ukwu [3] deftly 
deployed change of variables technique, 
maximum machine operational age constraint 
and appropriate set addition definition to obtain 
the structure of the sets of feasible machine ages 
corresponding to various decision periods, in 
machine replacement problems, thereby 
obviating the need for network diagrams for such 
determination and followed it up by designing 
solution implementation templates for the 
corresponding dynamic programming recursions, 
for problems with stationary pertinent data, 
thereby circumventing the inherent tedious and 
prohibitive manual computations associated with 
dynamic programming formulations. These 
results were extended to problems with dynamic 
pertinent data, by Ukwu [4], with their associated 
complexity. Finally, Ukwu [5] used the state 
concept to obtain the structure of the sets of 
feasible replacement times corresponding to 
various decision times, in machine replacement 
problems and then designed solution 
implementation templates for the corresponding 
dynamic programming recursions for problems 
with stationary pertinent data. Other related 
works include Verma [6], Gupta and Hira [7], in 

which the average annual cost criteria was used 
to determine alternative optimal policies and the 
corresponding optimal rewards in a non-dynamic 
programming fashion; the use of life curves for 
the determination of an optimal maintenance 
policy was discussed by Anders and Vaccaro [8]. 
Furthermore, Bagui et al. [9] presented a 
methodology for determining the economic life of 
pavement-based replacement decision. In their 
contribution, Gress et al. [10] modeled the 
machine replacement problem using Markov 
decision process, in which the instance was 
optimized via linear programming. Their goal was 
to analyze the sensitivity and robustness of the 
optimal solution across the perturbation of the 
optimal basis. This was the only discussion on 
sensitivity analysis. Cruz-Suárez &  Ilhuicatzi-
Roldan [11] considered a random-horizon 
problem, involving a system consisting of n 
independently operating deteriorating machines, 
with an associated cost function. The system 
was assumed to be observed at discrete times 
and the objective function was the total expected 
cost. The work provided an optimal replacement 
policy that minimized the operating cost of the 
system, as well as the solution implementation of 
a problem instance on MATLAB platform. Ukwu 
[12] examined the effects of different planning 
horizons, with machine replacement age fixed, in 
the Excel automated solutions to a class 
machine replacement problems with stationary 
pertinent data. The investigation revealed that  if  

the replacement age is fixed ,and 1 2and n n are 

any two horizon lengths with 1 2 ,n n< and 

* , ( )jp g j are stage  j  optimal decision and  

reward from the template with  horizon length 

2 2 1 2, for { 1 , , },n j n n n∈ + − L then 

*
1 2  and jp n n+ − ( )1 2g j n n+ −  are the 

corresponding optimal decision  and reward  in 
stage 1 2j n n+ −  for the template with  the 

horizon length 1.n  Moreover the corresponding 

optimal rewards are equal. The findings in Ukwu 
[12] are of great research and practical interests, 
as they clearly unveil tremendous savings in 
cost, time and energy in the search for and 
evolution of optimal replacement strategies with 
respect to problems with the same or unspecified 
replacement ages but different horizon lengths. 
They are especially appealing due to the 
invariance of the remaining pertinent data and 
hence the preservation of the columns of the 
solution templates. This article sets out to 
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nontrivially extend the results in Ukwu [5] to a 
class of machine replacement problems with 
dynamic pertinent data. By appropriating the 
structure of the states in time-perspective 
dynamic programming recursions the article 
makes positive and significant contribution to 
knowledge by designing and fully automating the 
solution templates for the determination of the 
optimal time replacement policies in machine 
replacement problems, with pertinent data given 
as dynamic functions of new machine purchase 
year and machine age. The article goes further to 
give an exposition on the automation process 
and computational details. 

2. METHODOLOGY 
 
In this section, the problem data, working 
definitions, elements of the DP model and the 
dynamic programming (DP) recursions are laid 
out as follows: 
 
2.1 Pertinent Dynamic Data  
 
Equipment Replacement age = 

Problem horizon length

m

n=

 
th

th

Cost  of maintaining an ,  in its year of operation, given that the equipment was purchased 

           ; {1, , }, {1, 2, , }

Revenue from an equipment in its year of operation, giv

 in year

j

j

j m j n

r

m

λ

λ λ

λ

λ

∈ ∈

=

=

L L

en that the equipment was purchased  

           ; {1, , }, {1, 2, , }

Salvage value of a year-old equipment,given that the equipment was purchased in year ;

{1, , }, {1, 2, , }

in year

j

j m j n

s j

m j n

λ

λ

λ

λ

∈ ∈

=

∈ ∈

L L

L L

.Cost of acquiring a new equipment in year  jI j=  
 
The elements of the DP are the following: 
 

1. Stage ,i  represented by time { }, 1, 2, , 1i i n∈ −K  

2. The alternatives at stage (time) .i  These call for keeping or replacing the machine at one of 

the times 1, ,min{ , }i m i n+ +L . 

3. The state at stage (time) ,i  represented by the time to advance to from time .i  
 

{ }Let  be the set of feasible equipment transition times (states) from decision time  , 0, 2, , 1
i

S i i n∈ −K . 

 
Let ( )g i  be the minimum net cost incurred in operating machine during the periods spanning times

, 1, , 1,i i n n+ −K , including purchase cost, revenue and salvage value for the newly purchased 

machine given that the machine has been purchased at time .i  
 

Let i pc  be the net cost (including purchasing, salvage value and earned revenue) of purchasing 

machine i and operating it until time p . 
 
Note: The definition of ( )g i  starting from time i  to time n  implies that backward recursion will be 

used. Forward recursion would start from time 1 to time .i  
 
The ensuing theorem is relevant to the main result of this article. 
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2.2 Theorem on Structure of States, 
Optimal Policy Prescriptions and 
Rewards, Ukwu [5] 

 
For {0,1, , 1},i n∈ −L  
 

{ }
1

with terminal state specification { }

(a) {min{ 1, }, , min{ , }}

      

(b) 

(c) ( ) min ( ) , ( ) 0
i

n

i

p i

i i p j p i p i
j

i p
p S

S n

S i n m i n

p S c I m s k

g i c g p g n

−

− −
=

∈

=

= + +

∈ ⇒ = + − =

= + =

∑

L

 
 
Cf. Ukwu [5] for the proof. 
 

(a) translates to 

 
{ 1, , }, if  {0, , } 

{ 1, , }, if  { , , 1}i

i m i i n m
S

i n i n m n

+ + ∈ −
=  + ∈ − −

L L

L L

 

 
The assumption n m≥ is implicit, since machine 
cannot be operated beyond the planning horizon. 

The terminal state specification makes sense 
since the process terminates at time .n  Thus n  
can be regarded as an absorbing state. Cf. Ukwu 
[5] for the proof of the theorem. 
 
The next section provides an instance of the 
class of machine replacement problems for 
which Excel solution templates will be designed 
and automated.  
 
2.3 Archetypal Application Problem for 

Solution Template Design and 
Automation 

 
A company reviews the status of its heavy 
machine at the end of each year, and a                   
decision is made to either to keep the machine 
an extra year or to replace it. However, machine 
that has been in service for 4 years must be 
replaced. The company wishes to develop a 
replacement policy for its fleet over the next ten 
years. The following table provides the pertinent 
data. All monetary values are in hundreds                    
of dollars. The machine is new at the start of year 
1.  

 
Table 1. Pertinent data for optimal policy and rewa rd determination for given purchase prices, 

costs, ages, revenues and salvage values 
 

Purchase Maintenance cost ($) 
for  given age (yr.) 

Revenue ($) for  given 
age (yr.) 

Salvage value ($) for given 
age (yr.) 

Yr. Price 0 1 2 3 0 1 2 3 1 2 3 4 
1 100 2.0 5.0 6.0 6.5 20 19 18 17 90 70 50 45 
2 120 2.5 5.5 6.2 6.8 21 20 19 18 110 95 80 75 
3 130 2.8 5.6 6.5 7.0 22 21 20 19 120 110 100 95 
4 135 3.2 6.0 6.7 7.3 21 20 19 18 120 115 110 115 
5 138 3.5 6.3 7.0 7.5 21 20 19 17 120 118 112 115 
6 142 3.9 6.4 7.2 7.7 22 21 20 19 125 120 112 117 
7 148 4.1 6.6 7.3 8.0 22 21 20 19 135 129 119 120 
8 152 4.3 6.7 7.5 8.2 22 21 20 19 140 132 120 121 
9 155 4.5 7.0 7.8 8.5 22 21 20 18 150 145 138 140 
10 160 5.0 7.1 8.0 8.8 23 22 21 20 158 150 145 147 

 
Design Automated Solution Templates and consequently Alternate Optimal Replacement Policies and 
rewards for the Machine Fleet.  
 
2.3.1 Solution to problem 2.3  
 
The given data must be restructured in three – dimension format, to depend only on the age of the 
machine for a given machine purchase year, starting from the terminal year, as follows: 
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Table 2. Pertinent data for decision year 10, showi ng equipment ages, revenues maintenance 
costs and salvage values 

 
Year 10: Purchase price = $16,000 

Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2300 500 - 
1 2200 710 15800 
2 2100 800 15000 
3 2000 880 14500 
4   14700 

    
Table 3.  Pertinent data for decision year 9  showing equipment ages, revenues maintenance 

costs and salvage values 
 

Year 9: Purchase price = $15,500 
Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2200 450 - 
1 2100 700 15000 
2 2000 780 14500 
3 1800 850 13800 
4   14000 

     
Table 4.  Pertinent data for decision year 8  showing equipment ages, revenues maintenance 

costs and salvage values 
 

Year 8: Purchase price = $15,200 
Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2200 430 - 
1 2100 670 14000 
2 2000 750 13200 
3 1900 820 12000 
4   12100 

    
Table 5.  Pertinent data for decision year 7  showing equipment ages, revenues maintenance 

costs and salvage values  
 

Year 7: Purchase price = $14,800 
Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2200 410 - 
1 2100 660 13500 
2 2000 730 12900 
3 1900 800 11900 
4   12000 

     
Table 6.  Pertinent data for decision year 6  showing equipment ages, revenues maintenance 

costs and salvage values 
 

Year 6: Purchase price = $14,200 
Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2200 390 - 
1 2100 640 12500 
2 2000 720 12000 
3 1900 770 11200 
4   11700 
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Table 7.  Pertinent data for decision year 5  showing equipment ages, revenues maintenance 
costs and salvage values  

 
Year 5: Purchase price = $13,800 

Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2100 350 - 
1 2000 630 12000 
2 1900 700 11800 
3 1700 750 11200 
4   11500 

 
Table 8. Pertinent data for decision year 4 showing  equipment ages, revenues maintenance 

costs and salvage values 
 

Year 4: Purchase price = $13,500 
Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2100 320 - 
1 2000 600 12000 
2 1900 670 11500 
3 1800 730 11000 
4   11500 

 
Table 9. Pertinent data for decision year 3  showing equipment ages, revenues maintenance 

costs and salvage values 
 

Year 3: Purchase price = $13,000 
Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2200 280 - 
1 2100 560 12000 
2 2000 650 11000 
3 1900 700 10000 
4   9500 

 
Table 10.  Pertinent data for decision year 2  showing equipment ages, revenues maintenance 

costs and salvage values 
 

Year 2: Purchase price = $12,000 
Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2100 250 - 
1 2000 550 11000 
2 1990 620 9500 
3 1800 680 8000 
4   7500 

 
Table 11.  Pertinent data for decision year 1  showing equipment ages, revenues maintenance 

costs and salvage values 
 

Year 1: Purchase price = $10,000 
Age: t  yrs. Revenue: r(t) ($) Maintenance cost: c(t) ($) Salvage value: s(t) ($) 
0 2000 200 - 
1 1900 500 9000 
2 1800 600 7000 
3 1700 650 5000 
4   4500 
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Fig. 1. Preliminary computations for stages 10 to 6  
 
 

Equipment Replacement Model I Stage m n

 Automated Solution Template 16,000 10 4 10

t = p-i 1 2 3 4

500 710 800 880

15800 15000 14500 14700

-2300 -2200 -2100 -2000

-1600 -2290 -3090 -4410

I Stage

15,500 9

450 700 780 850

15000 14500 13800 14000

-2200 -2100 -2000 -1800

-1250 -2150 -2670 -3820

I Stage

15,200 8

430 670 750 820

14000 13200 12000 12100

-2200 -2100 -2000 -1900

-570 -1200 -1250 -2430

I Stage

14,800 7

410 660 730 800

13500 12900 11900 12000

-2200 -2100 -2000 -1900

-490 -1330 -1600 -2800

I Stage

14,200 6

390 640 720 770

12500 12000 11200 11700

-2200 -2100 -2000 -1900

-110 -1070 -1550 -3180

jmλλλλ

jsλλλλ

jrλλλλ−−−−

jmλλλλ

jsλλλλ

jrλλλλ−−−−

jmλλλλ

jsλλλλ

jrλλλλ−−−−

t ik

t ik

t ik

jmλλλλ

jsλλλλ

jrλλλλ−−−−
t ik

jmλλλλ

jsλλλλ

jrλλλλ−−−−
t ik
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Fig. 2. Preliminary computations for stages 5 to 1 
 

Equipment Replacement Model I Stage m n

 Automated Solution Template 13,800 5 3 10

350 630 700 750

12000 11800 11200 11500

-2100 -2000 -1900 -1700

50 -1120 -1720 -2970

I Stage

13,500 4

320 600 670 730

12000 11500 11000 11500

-2100 -2000 -1900 -1800

-280 -1180 -1910 -3480

I Stage

13,000 3

280 560 650 700

12000 11000 10000 9500

-2200 -2100 -2000 -1900

-920 -1460 -1810 -2510

I Stage

12,000 2

250 550 620 680

11000 9500 8000 7500

-2100 -2000 -1900 -1800

-850 -800 -580 -1200

I Stage

10,000 1

200 500 600 650

9000 7000 5000 4500

-2000 -1900 -1800 -1700

-800 -200 600 50

jmλλλλ

jsλλλλ

jrλλλλ−−−−
t ik

jmλλλλ

jsλλλλ

jrλλλλ−−−−
t ik

jmλλλλ

jsλλλλ

jrλλλλ−−−−
t ik

jmλλλλ

jsλλλλ

jrλλλλ−−−−
t ik

jmλλλλ

jsλλλλ

jrλλλλ−−−−
t ik
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Fig. 3. Main Computations for the optimal prescript ion policy and rewards for stages 10 to 6 
 

Stage  j  Computations: i =  j - 1

Stage 10

i 9

q 9 10

-1600

g(q) -1600 0

f(i, p) -1600

g(i) -1,600

p* 10

Stage 9

i 8

q 8 9 10

-1250 -2150

g(q) (2,850) -1600 0

f(i, p) -2850 -2150

g(i) -2,850

p* 9

Stage 8

i 7

q 7 8 9 10

-570 -1200 -1250

g(q) -3420 -2850 -1600 0

f(i, p) -3420 -2800 -1250

g(i) -3,420

p* 8

Stage 7

i 6

q 6 7 8 9 10

-490 -1330 -1600 9200

g(q) -4180 -3420 -2850 -1600 0

f(i, p) -3910 -4180 -3200 9200

g(i) -4,180

p* 8

Stage 6

i 5

q 5 6 7 8 9

-110 -1070 -1550 -3180

g(q) -4780 -4180 -3420 -2850 -1600

f(i, p) -4290 -4490 -4400 -4780

g(i) -4,780

p* 9

t ik

t ik

t ik

t ik

t ik
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Fig. 4. Main Computations for the optimal prescript ion policy and rewards for stages 5 to 1 
 
 

Stage 5

i 4

q 4 5 6 7 8

50 -1120 -1720 -2970

g(q) -5820 -4780 -4180 -3420 -2850

f(i, p) -4730 -5300 -5140 -5820

g(i) -5,820

p* 8

Stage 4

i 3

q 3 4 5 6 7

-280 -1180 -1910 -3480

g(q) -6900 -5820 -4780 -4180 -3420

f(i, p) -6100 -5960 -6090 -6900

g(i) -6,900

p* 7

Stage 3

i 2

q 2 3 4 5 6

-920 -1460 -1810 -2510

g(q) -7820 -6900 -5820 -4780 -4180

f(i, p) -7820 -7280 -6590 -6690

g(i) -7,820

p* 3

Stage 2

i 1

q 1 2 3 4 5

-850 -800 -580 -1200

g(q) -8670 -7820 -6900 -5820 -4780

f(i, p) -8670 -7700 -6400 -5980

g(i) -8,670

p* 2

Stage 1

i 0

q 0 1 2 3 4

-800 -200 600 50

g(q) -9470 -8670 -7820 -6900 -5820

f(i, p) -9470 -8020 -6300 -5770

g(i) -9,470

p* 1

t ik

t ik

t ik

t ik

t ik



 
 
 
 

Chukwunenye; ACRI, 4(1): 1-15, 2016; Article no.ACRI.26021 
 
 

 
11 

 

{ } ,To determine  for 1, 2, ,10iS i ∈ L
 
invoke the following result from Ukwu [5]: 

 
2.4 Corollary to (a) of Theorem 2.2, Ukwu [5] 
 

{ }1If , then for 2, , ,t m i n< ∈ K

 
 

 
 
 
 
 
Cf. Ukwu [5] for the proof. 
 
In the given problem, 
 

      

{ } { }1 1 1

2 3

0, 4, 10, 1, 2, ,10 , 0 1 4

   {1}, {1, 2}, {1, 2,3}, {4,5, ,10}.i

t m n i S m t

S S S i

= = = ∈ = ⇒ + − =

⇒ = = = ∈

L

L  
 
Since the revenue profile is furnished the 

template for the implementation of ( )g i
 
in 

theorem 1 may be exploited to obtain the optimal 
solution to the problem noting that the 
optimal objective value of the given problem is 

( ) :g i− the maximum net profit derived from 
operating each machine in the fleet. 
 
The interface and Excel solution templates and 
implementations of the optimal policy 
prescriptions and rewards are given below. 
These are followed by interpretations of the 
optimal reward and policy prescription and a 
general exposition on prototypical solution 
templates for the given class of problems. The 
optimal strategies and returns and overall 
outputs for the given problem are seen to be 
consistent with the general exposition. 
 
3. RESULTS 
 
3.1 Optimal Reward for Problem 2.3 
 
The maximum net profit is given by −−−− g (0) = 
$9,470.00 
 
The optimal time replacement policy is given 
schematically by: 
 

0 1 2 3 7 8 9 10  → → → → → → →→ → → → → → →→ → → → → → →→ → → → → → →  
 

3.2 Interpretation of the Optimal Time 
Replacement Schema 

 
Starting with a new machine at time 0, machine 
replacements should be effected at times 1, 2, 

and 3; then the replacement machine at time 3 
should be kept until time 7 when it is 4 years old 
and mandatorily replaced with a new machine. 
Subsequently, machine replacements should be 
effected at times 8 and 9. The replacement 
machine at time 9 should be deployed for one 
year until time 10 when the process terminates 
 
4. DISCUSSION 
 
4.1 An Exposition on the Solution 

Templates 
 
The exposition on the solution template 
encompasses notations and features of the 
design template, the preliminary computations for

t ik , the core row-spacing imperatives among 

consecutive stages and main computations for 
optimal policies and corresponding rewards. 
 
4.1.1 Notations and features of the design 

template  
 

1. Identifiers are written in bold typeface 
while numeric values are not bolded; 
num_val is the numeric value assigned to 
num and stored at the cell location. 

2. Formulas are preceded by  ‘ = ‘ 
3. Following the execution of a formula by the 

keyboard operation ‘< Enter > ’ , the act of 
clicking back on a specified cell, 
positioning the cursor at the right edge of 
the cell until a crosshair appears and 
dragging the cross-hair horizontally or 

{ }{ } { }

{ }{ }
1 1

2

1
2

    

min 1, 1 ,  if  1

min 1, ,  if  1

j i

i

j i

j m i t i m t
S

j m i m t

≤ ≤

≤ ≤

− ∪ − + ≤ + −
=

− > + −






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vertically to some cell will be referred to as 
clerical routine/duty.   

4. Cross-hair horizontal dragging routines 
terminate in column N, except for the rare 

case 13,≥m as in the Aviation Industry, 
Power sector or in developing economies, 
where machine may be in use for 13 years 
or more due to poor economic conditions.  

 
4.1.2 Preliminary computations for and stage separation imperativest ik   

 
1. In the preliminary computations for t ik , three rows separate the stages. There is an additional 

row in stage n  of the process – the row for the operational periods identifier = −= −= −= −t p i . 

2. There are 6 rows in each of stages 1 to 1,n −−−− starting from the stage identifier and terminating 

in the optimal solution identifier *.p  In stage n , the relevant nonblank rows are 1 through 7. 

3. Stage data and  are located in rows:  2 9( ) to 7 9( ),  for  { 1, 2, ,1},

     where  1.

t ij k n j n j j n n

i j

+ − + − ∈ − −+ − + − ∈ − −+ − + − ∈ − −+ − + − ∈ − −

= −= −= −= −

L

 
4.1.3 Main computations for optimal policies, rewar ds and stage separation imperatives  
 

1. In the main computations for optimal policies, one row separates the stages. There is an 
additional row in stage n  of the process – the row for the identifier. Altogether there are nine 

rows here, namely row 9n  for the identifier and rows 9 1  to  9 8n n+ + for the computations 
2. 1= −= −= −= −Stage    Computations: j i j . 

3. There are 8 rows in each of stages 1 to 1,n −−−− starting from the stage identifier and 

terminating in the optimal solution identifier *.p  

*

4. Stage main computations are located in rows:  18 9 1 to 18 9 8,  for  

    { 1, 2, ,1},starting from the stage number implementation to the optimal solution  .

j n j n j

j n n pL

− + − +− + − +− + − +− + − +

∈ − −∈ − −∈ − −∈ − −

 
Step 1:  Storage of Parameters, Automation of Stage  Numbers and Operational Periods 
 

(a) Type the values of , and nI m n  in the cell locations B2, E2 and F2 respectively, where  nI  is 

the purchase price of the machine in year (stage)  n . Automate the stage number  n  by 
typing 

 
 ‘ = $B$2’, in C2, followed by <Enter>. Type the value of 1nI −   in B12 and those of jI  in cells 

( )B 3+9( ) ,  for { 2, 3, ,1}n j j n n− ∈ − − L .  

 
Type ‘ = $F$2 – 1 ‘ in C12, <Enter>; type ‘ = $C12 – 1 ‘ in C21, <Enter>. Then copy the formula in 
C21 and paste it successively into the cell locations:  
 

( )C 3+9( ) ,  for { 3, 4, ,1}n j j n n− ∈ − − L , to automate the stage numbering. 

 
(b) Type in 1 in C3. Type  ‘ =IF(C3="","",IF(C3>=MIN($E$2,$F$2),"",1+C3)) ’ in D3, <Enter> 

Then perform the horizontal clerical routine to secure {1,2, , }t p i m= − ∈ L .  
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Step 2: Computations of the st ik  in stage n  
 
Type the following code segment in C7: 
 

= IF(C$3="","",$B2+SUM($C4:C4,($C6:C6))-C5)  <Enter > 
 
Then perform the horizontal clerical routine to secure the st ik  in stage n . 

 
Step 3:  Computations of the st ik  in stages −−−− 1  to  1n  
 
Type the following code segment in C16: 
 

=IF(C$3="","",$B12+SUM($C13:C13,($C15:C15))-C14) <E nter> 
 
Then perform the horizontal clerical routine to secure the st ik  in stage 1n − . 

 
Finally, copy the contiguous region of the above formula and paste it successively on the 

corresponding contiguous regions in Excel rows 7 9( ), { 2, 3, ,1}n j j n n+ − ∈ − − L , starting from 

column C, to secure the st ik  in stage 2  to  1.n −  
 
4.1.4 Main computations for optimal policies and re wards  
 
Step 1:  Automation of Stage Numbers and Operationa l Periods 
 

(a) Type ‘ =$F$2’, in cell B91, <Enter>  ; Type ‘ =$B91 – 1,  in cell B100, <Enter>  
(b) Copy the formula in B100 and paste it successively in the cell locations  

 

( )B 100 9( 1 ) ,  for  { 2, 3, ,1}n j j n n+ − − ∈ − − L , to secure the stage numbers. 

  
Step 2: Automation of values of i  and the first value of q in stages , − −1  and 2n n n  
 

(a) Type ‘ = $B91-1’ in B92 . <Enter>, to obtain i  in stage n  
(b) Type ‘ = $B92’  in B93. <Enter>, to obtain  the first q  in stage n  

(c) Type ‘ = $B92 – 1 ’  in B101. <Enter>, to obtain  value of i  in stage 1n −  
(d) Type ‘ = $B93 – 1 ’  in B102. <Enter>, to obtain  the first q  in stage 1n −  

(e) Copy the contiguous cells B101:B102 of stage 1n −  into the contiguous region B110:B111 of 
stage 2n − , to secure the value of i  and the first value of q , in stage 2n −  

 

Step 3: Automation of the values of *, , ( ), ( , ), ( ) and  tiq k g q f i p g i p  in 

stages , − −1  and 2n n n  
 

(a) Type  ‘ =IF(B93>=MIN($B92+$E$2,$F$2),"",1+B93) ’ in C93. <Enter>.  
 

Then perform the horizontal clerical routine to secure the remaining values of q  in stage n . 

 
Copy the above formula for q , in stage n , starting from column C to the corresponding 

contiguous regions in stages 1 and 2n n− − , in rows 102 and 111 respectively, starting from 
column C, to secure the values of q in those stages. 
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(b) Type ‘=IF (C93="","",  C7)’ in C94. <Enter>.  
 

Then perform the horizontal clerical routine to secure the values of tik  in stage n . 

Copy the above formula for tik , in stage n , starting from column C to the corresponding 

contiguous regions in stages 1 and 2n n− − , in rows 103 and 112 respectively, starting from 

column C, to secure the values of tik  in those stages. 

 
(c) Type in 0 in C95, in stage n  

 
Type ‘=IF(C102="","",IF(C102 = $F$2,0, B95))’ in C104. <Enter>. 
 

Then perform the horizontal clerical routine to secure the values of ( )g q  in stage 1n − . 
 

Copy the above formula for ( )g q , in stage 1n − , starting from column C to the corresponding 

contiguous region in stage  2n − , in row 113, starting from column C, to secure the values of 

( )g q  in stage  2n − . 
 

(d) Type ‘= IF(C93 = "", "",C94+C95)’ in C96, in stage n . <Enter>.  
 

Then perform the horizontal clerical routine to secure the values of ( , )f i p  in stage n . 
 

Copy the above formula for ( , )f i p , in stage n , starting from column C to the corresponding 

contiguous regions in stages 1 and 2n n− − , in rows 105 and 114 respectively, starting from  

column C, to secure the values of ( , )f i p  in those stages. 
 

(e) Type ‘=MIN ($C96:$N96)’ in B95. <Enter>. Then copy this formula for 
( ),   for  1g q q i n= = −  to B104 and B113, in stages 1 and 2n n− −  respectively.  

(f) Type ‘=$B95’ in B97. <Enter>. Then copy this formula to B106 and B115, in stages 
1 and 2n n− −  respectively. 

(g) Type ‘ = IF(C96=$B97,C93,"")’ in C98. <Enter>.  Then perform the horizontal clerical routine 

to secure the value(s) of *p  in stage n . Then copy this formula to the corresponding regions 

in stages  1 and 2n n− − , starting from C107 and C116, in respectively. 
 
Step 4: Automation of the computations in 
stages −3 to 1n  
 
Copy the contiguous region of stage 2n − , in 
rows 109 to 116, starting from column A onto the 
contiguous regions in stages 3  to  1n − , starting 
from row 118, with a blank row between 
consecutive stages. This single Copy and 3 n −
Paste operations secure the desired values in 
stages 3  to  1n − , and hence the optimal policy 
prescriptions and corresponding rewards. 
 
5. CONCLUSION 
 
This paper exploited the structure of the 
transition time states in dynamic programming 

recursions, Microsoft Excel functionality and 
coding possibilities to design and fully automate 
the solution templates for the determination of 
machine time-optimal replacement policies in a 
certain class of machine replacement problems, 
with pertinent data given as dynamic functions of 
new machine purchase year and machine age. 
The automation of these templates was stringent 
on the imperative of prefixed spacing of three 
rows between consecutive stages in the 
preliminary computations and one row between 
consecutive stages in the main computations. 
The templates with dynamic data were obtained 
through extensive modifications of the base 
templates in Ukwu [5] and demonstrated 
consistency with the latter, as verifiable by the 
use of the same data set in all the stages of the 
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process. The automation of these templates is a 
novelty that has introduced/created 
implementation paradigm shift, paving the way 
for speedy and optimal solutions to large-scale 
problems in the given class with almost effortless 
resolutions of associated issues of sensitivity 
analyses. 
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