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ALMOST KÄHLER EIGHT-DIMENSIONAL WALKER
MANIFOLD

Abdoul Salam Diallo12, Silas Longwap3 and Fortuné Massamba4

Abstract. A Walker n-manifold is a pseudo-Riemannian manifold
which admits a field of parallel null r-planes, with r ≤ n

2
. The canonical

forms of the metrics were investigated by A. G. Walker [13]. Of special
interest are the even-dimensional Walker manifolds (n = 2m) with fields
of parallel null planes of half dimension (r = m). In this paper, we
investigate geometric properties of some curvature tensors of an eight-
dimensional Walker manifold. Theorems for the metric to be Einstein,
locally conformally flat and for the Walker eight-manifold to admit a
Kähler structure are given.
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1. Introduction

It is known that Walker metrics have served as a powerful tool for con-
structing interesting indefinite metrics which exhibit various aspects of geo-
metric properties not given by any positive definite metrics. Among these,
the significant Walker manifolds are the examples of the non-symmetric and
non-homogeneous Osserman manifolds [2]. It was shown in [6, 9, 10] that the
Walker 4-manifolds of neutral signature admit a pair comprising of an almost
complex structure and an opposite almost complex structure, and that Petean’s
non-flat indefinite Kähler-Einstein metric on a torus was obtained as an exam-
ple of Walker 4-manifolds. Banyaga and Massamba in [1] derived a Walker
metric when studying the non-existence of certain Einstein metrics on some
symplectic manifolds. Moreover, an indefinite Ricci flat strictly almost Kähler
metric on eight-dimensional torus was reported in [11]. Thus the Walker 4-
and 8-manifolds display a large variety of indefinite geometry in dimensions
four and eight.
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Our aim is to study restricted 8-Walker metrics by focusing on their cur-
vature properties. The main results of this paper are the characterization of
Walker metrics which are Einstein, locally conformally flat and Kähler. The
paper is organized as follows. In Section 2, we recall some basic notions about
Walker metrics. Two specific Walker metrics of 8-dimensional manifolds are
investigated in Section 3. We find the form of the defining functions that makes
those metrics similar to Einstein and locally conformally flat metrics. In the
last section we give conditions for the Walker 8-manifold to admit a Kähler
structure.

2. The canonical form of Walker metrics

Let M be a pseudo-Riemannian manifold of signature (n, n). Suppose that
the tangent bundle TM splits as a sum of smooth sub-bundles D1 and D2,
called distributions:

TM = D1 ⊕D2.

This define two complementary projections π1 and π2 of TM onto D1 and D2.
We say that D1 is parallel distribution if ∇π1 = 0. Equivalently this means
that if X1 is any smooth vector field taking values in D1, then ∇X1 again
takes values in D1. If M is Riemannian, we can take D2 = D⊥

1 to be the
orthogonal complement of D1 and in that case D2 is again parallel. In the
pseudo-Riemannian setting, D1 ∩ D2 need not be trivial. We say that D1 is a
null parallel distribution if it is parallel and the metric restricted to D1 vanishes
identically.

Walker [13] studied pseudo-Riemannian manifolds (M, g) with a parallel
field of null planes D and derived a canonical form. Motivated by this seminal
work, one says that a pseudo-Riemannian manifold M which admits a null
parallel (i.e., degenerate) distribution D is a Walker manifold.

Canonical forms were known previously for parallel non-degenerate distri-
butions. In this case, the metric tensor, in matrix notation, is expressed in the
canonical form as

(gij) =

(
A 0
0 B

)
,(2.1)

where A is a symmetric (r × r)- matrix whose coefficients are functions of
(u1, . . . , ur) and B is a symmetric (n − r) × (n − r) matrix whose coefficients
are functions of (ur+1, . . . , un). Here n is the dimension of M and r is the
dimension of the distribution D. We will refer to [2] for the proof of the
following theorems.

Theorem 2.1. [2] A canonical form for an n-dimensional pseudo-Riemannian
manifold (M, g) admitting a parallel field of null r-dimensional planes D is
given by the metric tensor in matrix form as

(gij) =

 0 0 Idr
0 A H
Idr

tH B

 ,(2.2)
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where Idr is the (r× r)-identity matrix and A,B,H are matrices whose coeffi-
cients are functions of the coordinates satisfying the following:

1. A and B are symmetric matrices of orders (n−2r)× (n−2r) and (r×r),
respectively. H is a matrix of order (n − 2r) × r and tH stands for the
transpose of H.

2. A and H are independent of the coordinates (u1, . . . , ur).

Furthermore, the null parallel r-plane D is locally generated by the coordinate
vector fields {∂u1 , . . . , ∂ur}.

Theorem 2.2. [2] A canonical form for an n-dimensional pseudo-Riemannian
manifold (M, g) admitting a strictly parallel field of null r-dimensional planes
D is given by the metric tensor as in Theorem 2.1, where B is independent of
the coordinates (u1, . . . , ur).

Recall that a Walker metric is said to be Einstein Walker metric if its
Ricci tensor is a scalar multiple of the metric at each point. Four-dimensional
Einstein Walker manifolds form the underling structure of many geometric and
physical models such as; hh-space in general relativity, pp-wave model and
other areas, see, for example, [3] and references therein.

3. On eight-dimensional Walker metrics

A neutral g on an 8-manifold M is said to be a Walker metric if there exists
a 4-dimensional null distribution D on M which is parallel with respect to g.
From Walker theorem [13], there is a system of coordinates (u1, . . . , u8) with
respect to which g takes the local canonical form

(gij) =

(
0 Id4
Id4 B

)
,(3.1)

where Id4 is the (4× 4)-identity matrix and B is an (4× 4) symmetric matrix
whose coefficients are the functions of (u1, . . . , u8). Note that g is of neu-
tral signature (4, 4) and that the parallel null 4-plane D is spanned locally by
{∂1, . . . , ∂4}, where ∂i =

∂
∂i
, i = 1, 2, 3, 4.

In this paper, we consider the specific Walker metrics on 8-dimensional mani-
fold M with B of the form

B =


a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

 ,(3.2)

where a is a function of the (u1, . . . , u8). We will denote by ai =
∂a(u1,...,u8)

∂ui
.

The non-vanishing components of the Christoffel symbols Γk
ij of the Levi-Civita

connection of the Walker metric (3.1) and (3.2) are given by

(3.3)
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Γ1
ij =

−a

2

(
∂igj1 + ∂jgi1 − ∂1gij

)
+

1

2

(
∂igj5 + ∂jgi5 − ∂5gij

)
,

Γ2
ij =

−a

2

(
∂igj2 + ∂jgi2 − ∂2gij

)
+

1

2

(
∂igj6 + ∂jgi6 − ∂6gij

)
,

Γ3
ij =

−a

2

(
∂igj3 + ∂jgi3 − ∂3gij

)
+

1

2

(
∂igj7 + ∂jgi7 − ∂7gij

)
,

Γ4
ij =

−a

2

(
∂igj4 + ∂jgi4 − ∂4gij

)
+

1

2

(
∂igj8 + ∂jgi8 − ∂8gij

)
,

Γ5
ij =

1

2

(
∂igj1 + ∂jgi1 − ∂1gij

)
, Γ6

ij =
1

2

(
∂igj2 + ∂jgi2 − ∂2gij

)
,

Γ7
ij =

1

2

(
∂igj3 + ∂jgi3 − ∂3gij

)
, Γ8

ij =
1

2

(
∂igj4 + ∂jgi4 − ∂4gij

)
.

A straightforward calculation shows that the non-vanishing components of
Levi-Civita connection of a Walker metric (3.1) and (3.2) are given by

(3.4)

∇∂5∂5 =
1

2

(
(aa1 + a5)∂1 + (aa2 − a6)∂2 + (aa3 − a7)∂3 + (aa4 − a8)∂4

)
−1

2

(
a1∂5 + a2∂6 + a3∂7 + a4∂8

)
,

∇∂6∂6 =
1

2

(
(aa1 − a5)∂1 + (aa2 + a6)∂2 + (aa3 − a7)∂3 + (aa4 − a8)∂4

)
−1

2

(
a1∂5 + a2∂6 + a3∂7 + a4∂8

)
,

∇∂7
∂7 =

1

2

(
(aa1 − a5)∂1 + (aa2 − a6)∂2 + (aa3 + a7)∂3 + (aa4 − a8)∂4

)
−1

2

(
a1∂5 + a2∂6 + a3∂7 + a4∂8

)
,

∇∂8
∂8 =

1

2

(
(aa1 − a5)∂1 + (aa2 − a6)∂2 + (aa3 − a7)∂3 + (aa4 + a8)∂4

)
−1

2

(
a1∂5 + a2∂6 + a3∂7 + a4∂8

)
,

∇∂5
∂6 =

1

2
a6∂1 +

1

2
a5∂2, ∇∂5

∂7 =
1

2
a7∂1 +

1

2
a5∂3,

∇∂5∂8 =
1

2
a8∂1 +

1

2
a5∂2, ∇∂6∂7 =

1

2
a7∂2 +

1

2
a6∂3,

∇∂6∂8 =
1

2
a8∂2 +

1

2
a6∂4, ∇∂7∂8 =

1

2
a8∂3 +

1

2
a7∂4.

3.1. First class of Walker metrics

Suppose that a is a function of (u1, . . . , u4). From the relations (3.4), after
a long but straightforward calculation, the non-zero components of the (1, 3)-
curvature operator of any Walker metric (3.1) and (3.2) is given by

(3.5)

R(∂5, ∂6)∂5 =
aa1a2
2

∂1 +
aa22
2

∂2 +
aa2a3
2

∂3 +
aa2a4
2

∂4
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−a1a2
2

∂5 −
a22
2
∂6 −

a2a3
2

∂7 −
a2a4
2

∂8;

R(∂5, ∂6)∂6 = −aa21
2

∂1 −
aa2a2
2

∂2 −
aa1a3
2

∂3 −
aa1a4
2

∂4

+
a21
2
∂5 +

a1a2
2

∂6 +
a1a3
2

∂7 +
a1a4
2

∂8;

R(∂5, ∂7)∂5 =
aa1a3
2

∂1 +
aa2a3
2

∂2 +
aa23
2

∂3 +
aa3a4
2

∂4

−a1a3
2

∂5 −
a2a3
2

∂6 −
a23
2
∂7 −

a3a4
2

∂8;

R(∂5, ∂7)∂7 = −aa21
2

∂1 −
aa1a2
2

∂2 −
aa1a3
2

∂3 −
aa1a4
2

∂4

+
a21
2
∂5 +

a1a2
2

∂6 +
a1a3
2

∂7 +
a1a4
2

∂8;

R(∂5, ∂8)∂5 =
aa1a4
2

∂1 +
aa2a4
2

∂2 +
aa3a4
2

∂3 +
aa24
2

∂4

−a1a4
2

∂5 −
a2a4
2

∂6 −
a3a4
2

∂7 −
a24
2
∂8;

R(∂5, ∂8)∂8 = −aa21
2

∂1 −
aa2a2
2

∂2 −
aa1a3
2

∂3 −
aa1a4
2

∂4

+
a21
2
∂5 +

a1a2
2

∂6 +
a1a3
2

∂7 +
a4a4
2

∂8;

R(∂6, ∂7)∂6 =
aa1a3
2

∂1 +
aa2a3
2

∂2 +
aa23
2

∂3 +
aa3a4
2

∂4

−a1a3
2

∂5 −
a2a3
2

∂6 −
a23
2
∂7 −

a3a4
2

∂8;

R(∂6, ∂7)∂7 = −aa1a3
2

∂1 −
aa2a3
2

∂2 −
aa23
2

∂3 −
aa3a4
2

∂4

+
a1a3
2

∂5 +
a2a3
2

∂6 +
a23
2
∂7 +

a3a4
2

∂8;

R(∂6, ∂8)∂6 =
aa1a4
2

∂1 +
aa2a4
2

∂2 +
aa3a4
2

∂3 +
aa24
2

∂4

−a1a4
2

∂5 −
a2a4
2

∂6 −
a3a4
2

∂7 −
a24
2
∂8;

R(∂6, ∂8)∂8 = −aa1a2
2

∂1 −
aa22
2

∂2 −
aa2a3
2

∂3 −
aa2a4
2

∂4

+
a1a2
2

∂5 +
a22
2
∂6 +

a2a3
2

∂7 +
a2a4
2

∂8;

R(∂7, ∂8)∂7 =
aa1a4
2

∂1 +
aa2a4
2

∂2 +
aa3a4
2

∂3 +
aa24
2

∂4

−a1a4
2

∂5 −
a2a4
2

∂6 −
a3a4
2

∂7 −
a24
2
∂8;
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R(∂7, ∂8)∂8 = −aa1a3
2

∂1 −
aa2a3
2

∂2 −
aa23
2

∂3 −
aa3a4
2

∂4

+
a1a3
2

∂5 +
a2a3
2

∂6 +
a23
2
∂7 +

a3a4
2

∂8.

From the relations (3.5), after a straightforward calculation, the non-zero com-
ponents of the (0, 4)-curvature tensor of any Walker metric (3.1) and (3.2) with
a = a(u1, . . . , u4) are given by

R1556 = R5662 = R5772 = R5882 = R6771 = R6881 =
a1a2
4

,(3.6)

R1557 = R5663 = R5773 = R5883 = R1667 = R7881 =
a1a3
4

,

R1558 = R5664 = R5774 = R5884 = R1668 = R1778 =
a1a4
4

,

R2557 = R5635 = R6773 = R6883 = R2667 = R7882 =
a2a3
4

,

R2558 = R5645 = R6774 = R6884 = R2668 = R2778 =
a2a4
4

,

R3558 = R5745 = R4667 = R3668 = R3778 = R7884 =
a3a4
4

,

R1665 = R1775 = R1885 =
a21
4
, R2556 = R2776 = R2886 =

a22
4
,

R3557 = R3667 = R3887 =
a23
4
, R4558 = R4668 = R4778 =

a24
4
,

Next, let ρ(X,Y ) = trace{Z −→ R(X,Z)Y } be the Ricci tensor. Then from
(3.6) we have

ρ55 =
1

2
(a22 + a23 + a24), ρ66 =

1

2
(a21 + a23 + a24)(3.7)

ρ77 =
1

2
(a21 + a22 + a24), ρ88 =

1

2
(a21 + a22 + a23)

ρ56 = −a1a2
2

, ρ57 = −a1a3
2

, ρ58 = −a1a4
2

ρ67 = −a2a3
2

, ρ68 = −a2a4
2

, ρ78 = −a3a4
2

.

From (3.7), the scalar curvature Sc =
∑8

1 g
ijρij of the Walker metric is zero.

We have the following result.

Theorem 3.1. A Walker metric given by (3.1) and (3.2) is not Einstein if the
function a depends only on (u1, . . . , u4).

Proof. The Einstein equations defined by Gij = ρij − Sc
8 gij for the Walker

metric given by (3.1) and (3.2) with a = a(u1, . . . , u4) are as follows:

G56 = −a1a2
2

= 0, G57 = −a1a3
2

= 0, G58 = −a1a4
2

= 0

G67 = −a2a3
2

= 0, G68 = −a2a4
2

= 0, G78 = −a3a4
2

,
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and

G55 =
1

2
(a22 + a23 + a24) = 0, G66 =

1

2
(a21 + a23 + a24) = 0

G77 =
1

2
(a21 + a22 + a24) = 0, G88 =

1

2
(a21 + a22 + a23) = 0.

This completes the proof.

Let W denote the Weyl conformal curvature tensor given by

W (X,Y, Z, T ) : = R(X,Y, Z, T )

+
Sc

(n− 1)(n− 2)

{
g(Y, Z)g(X,T )− g(X,Z)g(Y, T )

}
+

1

n− 2

{
ρ(Y, Z)g(X,T )− ρ(X,Z)g(Y, T )

− ρ(Y, T )g(X,Z) + ρ(X,T )g(Y, Z)
}
.

A pseudo-Riemannian manifold is locally conformally flat if and only if its
Weyl tensor vanishes. The non-zero components of Weyl conformal tensor of a
Walker metric defined by (3.1) and (3.2) with a = a(u1, . . . , u4) are given by

W1556 =
a1a2
3

, W1557 =
a1a3
3

, W1558 =
a1a4
3

,(3.8)

W1665 =
1

12
(4a21 + a23 + a24), W1667 =

a1a3
4

, W1668 =
a1a4
4

,

W1775 =
1

12
(4a21 + a22 + a24), W1776 =

a1a2
4

, W1778 =
a1a4
4

,

W1885 =
1

12
(4a21 + a22 + a23), W1886 =

a1a2
4

, W1887 =
a1a3
4

,

W2556 =
1

12
(4a22 + a23 + a24), W2557 =

a2a3
4

, W2558 =
a2a4
4

,

W2665 =
a1a2
3

, W2667 =
a2a3
3

, W2668 =
a2a4
3

,

W2775 =
a1a2
4

, W2776 =
1

12
(a21 + 4a22 + a24), W2778 =

a2a4
4

,

W2885 =
a1a2
4

, W2886 =
1

12
(a21 + 4a22 + a23), W2887 =

a2a3
4

,

W3556 =
a2a3
4

, W3557 =
1

12
(a22 + 4a23 + a24), W3558 =

a3a4
4

,

W3665 =
a1a3
4

, W3667 =
1

12
(a21 + 4a23 + a24), W3668 =

a3a4
4

,

W3775 =
a1a3
3

, W3776 =
a2a3
3

, W3778 =
a3a4
3

,

W3885 =
a1a3
4

, W3886 =
a2a3
4

, W3887 =
1

12
(a21 + a22 + 4a23),

W4556 =
a2a4
4

, W4557 =
a3a4
4

, W4558 =
1

12
(a22 + a23 + 4a24),
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W4665 =
a1a4
4

, W4667 =
a3a4
4

, W4668 =
1

12
(a21 + a23 + 4a24),

W4775 =
a1a4
4

, W4776 =
a2a4
4

, W4778 =
1

12
(a21 + a22 + 4a24),

W4885 =
a1a4
3

, W4886 =
a2a4
3

, W4887 =
a3a4
3

.

Now it is possible to obtain the form of a locally conformally flat Walker metric
defined by (3.1) and (3.2) with a = a(u1, . . . , u4).

Theorem 3.2. A Walker metric given by (3.1) and (3.2) with a = a(u1, . . . , u4)
is locally conformally flat if the function a is constant.

Proof. From (3.8) after a straightforward calculation.

3.2. Strictly Walker metrics

One says that (M, g) is a strict Walker manifold if a is a function of the
(u5, . . . , u8). From the relations (3.4), after a long but straightforward calcu-
lation, the non-zero components of the (1, 3)-curvature operator of any Walker
metric (3.1) and (3.2) with a = a(u5, . . . , u8) are given by

(3.9)

R(∂5, ∂6)∂5 =
1

2
(a55 + a66)∂2 +

1

2
a67∂3 +

1

2
a68∂4,

R(∂5, ∂6)∂6 = −1

2
(a55 + a66)∂1 −

1

2
a57∂3 −

1

2
a58∂4,

R(∂5, ∂6)∂7 = −1

2
a67∂1 +

1

2
a57∂2, R(∂5, ∂6)∂8 = −1

2
a68∂1 +

1

2
a58∂2,

R(∂5, ∂7)∂5 =
1

2
a76∂2 +

1

2
(a55 + a77)∂3 +

1

2
a78∂4,

R(∂5, ∂7)∂7 = −1

2
(a55 + a77)∂1 −

1

2
a56∂2 −

1

2
a58∂4,

R(∂5, ∂7)∂6 = −1

2
a76∂1 +

1

2
a56∂3, R(∂5, ∂7)∂8 = −1

2
a78∂1 +

1

2
a58∂3,

R(∂5, ∂8)∂5 =
1

2
a86∂2 +

1

2
a87∂3 +

1

2
(a55 + a88)∂4,

R(∂5, ∂8)∂6 = −1

2
a86∂1 +

1

2
a56∂4, R(∂5, ∂8)∂7 = −1

2
a87∂1 +

1

2
a57∂4,

R(∂5, ∂8)∂8 = −1

2
(a55 + a88)∂1 −

1

2
a56∂2 −

1

2
a57∂3,

R(∂6, ∂7)∂6 =
1

2
a75∂1 +

1

2
(a66 + a77)∂3 +

1

2
a78∂4,

R(∂6, ∂7)∂5 = −1

2
a75∂2 +

1

2
a65∂3, R(∂6, ∂7)∂8 = −1

2
a78∂2 +

1

2
a68∂3,

R(∂6, ∂7)∂7 = −1

2
a65∂1 −

1

2
(a66 + a77)∂2 −

1

2
a68∂4,

R(∂7, ∂8)∂5 = −1

2
a85∂3 +

1

2
a75∂4, R(∂7, ∂8)∂6 = −1

2
a86∂3 +

1

2
a76∂4,
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R(∂7, ∂8)∂7 =
1

2
a85∂1 +

1

2
a85∂2 +

1

2
(a77 + a88)∂4,

R(∂7, ∂8)∂8 = −1

2
a75∂1 −

1

2
a76∂2 −

1

2
(a77 + a88)∂3.

From the relations (3.9), after a straightforward calculation, the non-zero
components of the (0, 4)-curvature tensor of any Walker metric (3.1) and (3.2)
with a = a(u5, . . . , u8) are obtained as

R5657 = R6878 =
1

2
a67, R5658 = R6787 =

1

2
a68,(3.10)

R5676 = R5878 =
1

2
a57, R5686 = R5787 =

1

2
a58,

R5758 = R6768 =
1

2
a78, R5767 = R5868 =

1

2
a56,

R5656 =
1

2
(a55 + a66), R5757 =

1

2
(a55 + a77),

R5858 =
1

2
(a55 + a88), R6767 =

1

2
(a66 + a77),

R6868 =
1

2
(a66 + a88),

R7878 =
1

2
(a77 + a88).

We have the following:

Theorem 3.3. Let (M, g) be as in (3.1) and (3.2) with a = a(u5, . . . , u8).
Then the following holds:

1. (M, g) is Ricci flat.

2. (M, g) is locally conformally flat if and only if (M, g) is flat. This means
the function a = a(u5, . . . , u8) is a constant.

Proof. From the formula ρkl =
∑8

i,j=1 g
ijRkijl all the components of Ricci

tensor are zero.

4. Almost Kähler Walker 8-manifolds

An almost Hermitian structure on a manifoldM consists of a non-degenerate
2-form Ω, an almost complex structure J and a metric g satisfying the com-
patibility condition Ω(X,Y ) = g(JX, Y ). If the 2-form Ω is closed (i.e., it is a
symplectic form) the structure is said to be almost Kähler and (g, J) is said to
be Kähler if, in addition, the almost complex structure J is integrable (i.e., it
is defined by a complex coordinate atlas on M). It is worth emphasizing that
each two of the objects (g, J,Ω) determine the third one. However, whenever
the starting point is a symplectic structure Ω, there are many different pairs
(g, J) of almost Hermitian structures sharing the same Kähler form Ω.
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Given a Walker 8-manifold M with a metric g, we can construct various
g-orthogonal almost complex structures J on M so that (M, g, J) is almost
Hermitian. We can define an almost complex structure as follows:

J∂1 = ∂2, J∂3 = ∂4, J∂2 = −∂1, J∂4 = −∂3,(4.1)

J∂5 = ∂6, J∂7 = ∂8, J∂6 = −∂5, J∂8 = −∂7.

From the actions of J on the ∂i, i = 1, . . . , 8, if we write J∂i =
∑8

j=1 J
j
i ∂j , then

we can have the non-zero components Jj
i of J as follows:

J2
1 = −J1

2 = J4
3 = −J3

4 = J6
5 = −J5

6 = J8
7 = −J7

8 = 1.(4.2)

Next, we shall study this almost Hermitian structure (g, J) on R8, with g as in
(3.1), (3.2) and J as in (4.1).

Associated with the almost Hermitian structure (g, J) is the Kähler form
Ω, defined by Ω(X,Y ) = g(JX, Y ) for any vector fields X,Y with coordinate
expression given by

Ω =
∑
i<j

Ω(∂i, ∂j)du
i ∧ duj(4.3)

= du1 ∧ du2 + du1 ∧ du6 − du2 ∧ du5 + du3 ∧ du4

+ du3 ∧ du8 − du4 ∧ du7 + adu5 ∧ du6 + adu7 ∧ du8.

We can compute the differential of Ω as follows:

dΩ = a1
(
du1 ∧ du5 ∧ du6 + du1 ∧ du7 ∧ du8

)
(4.4)

+ a2
(
du2 ∧ du5 ∧ du6 + du2 ∧ du7 ∧ du8

)
+ a3

(
du3 ∧ du5 ∧ du6 + du3 ∧ du7 ∧ du8

)
+ a4

(
du4 ∧ du5 ∧ du6 + du4 ∧ du7 ∧ du8

)
+ a5du

5 ∧ du7 ∧ du8 + a6du
6 ∧ du7 ∧ du8

+ a7du
7 ∧ du5 ∧ du6 + a8du

8 ∧ du5 ∧ du6,

where ai = ∂a/∂i, i = 1, . . . , 8. From this expression, we have the following

Proposition 4.1. The 2-form Ω is symplectic if and only if the function a is
a constant.

The almost complex structure J is integrable if and only if the torsion of J
(Nijenhuis tensor) vanishes, i.e., the components

(4.5) N i
jk = 2

8∑
h=1

(
Jh
j

∂J i
k

∂uh
− Jh

k

∂J i
j

∂uh
− J i

h

∂Jh
k

∂uj
+ J i

h

∂Jh
j

∂uh

)
all vanish (cf. [11]) with Jj

i as in (4.2). By explicit calculation, all components
of the Nijenhuis tensor vanish. Recall that, the almost Hermitian structure
(g, J) is Kähler if the 2-form is a symplectic form and J is integrable. Thus we
have:
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Theorem 4.2. The almost Hermitian Walker 8-manifold (M, g, J), with g as
in (3.1), (3.2) and J as in (4.1), is Kähler if and only if the function a is a
constant.

A long standing problem in almost Hermitian geometry is that of relat-
ing the properties of the structure (g, J,Ω) to the curvature of (M, g). For
example the Goldberg conjecture [7], which claims that if a compact almost
Kähler manifold is Einstein, then it is Kähler. This conjecture was proved by
K. Sekigawa [12], in the case of non-negative scalar curvature, but it remains
open in the negative case. Although the Goldberg conjecture is of global na-
ture, it is known that some additional curvature conditions suffice to show the
integrability of the almost complex structure at the local level.

Remark 4.3. Y. Matsushita [9] considered a restricted class of Walker 4-mani-
folds, by imposing a restriction on the general expression of the canonical form
of the metric of a Walker 4-manifold. On this restricted class of Walker 4-
manifolds Matsushita constructed an almost complex structure and an opposite
almost complex structure which commute and considers the associated Kähler
forms. Then he gave conditions for the Walker 4-manifold to admit a symplectic
structure, the almost complex structure to be integrable and the metric to
be Einstein. That is, Matsushita shows that the class of Walker 4-manifolds
studied contains examples of indefinite Kähler-Einstein 4-manifolds, examples
of indefinite Hermitian 4-manifolds and examples of indefinite almost Kähler
4-manifolds. Moreover, he also gave conditions for the opposite Kähler form to
be a symplectic form.

Matsushita [10] studied the Walker 4-manifold as an almost Hermitian
4-manifold. The almost Kähler condition, the Hermitian condition and the
Kähler condition for the almost Hermitian structure (g, J) are explicitly given
in terms of three functions a, b and c characterizing the metric g. If the almost
Hermitian structure (g, J) is Kähler, then these functions a, b and c are all har-
monic with respect to two coordinates. From this fact, for any given harmonic
function of two variables, an indefinite Kähler metric can be constructed on a
Walker 4-manifold, thereby giving a family of indefinite Kähler 4-manifolds. It
should be noted that, in this family, a specific Kähler metric thus constructed
is nothing but Petean’s non-flat indefinite Kähler-Einstein metric on a com-
plex torus. The paper [10] also includes a counterexample of indefinite and
non-compact type, constructed by Haze on a Walker 4-manifold, to the Gold-
berg conjecture [7]. The Walker 4-manifold with an opposite almost complex
structure is also analyzed as an opposite almost Hermitian 4-manifold.

In [5], it is proved that any proper almost Hermitian structure on a Walker
four-manifold is isotropic Kähler. As examples, isotropic Kähler, almost Kähler
and Hermitian structures can be defined on tori. Moreover, for almost Kähler
Walker four-manifolds which are self-dual, -Einstein or Einstein, local descrip-
tions are given. As a consequence of such descriptions, it is shown that any
proper almost Kähler Einstein structure is self-dual, Ricci flat and ∗-Ricci flat.
This is used to supply examples of flat indefinite non-Kähler and almost Kähler
structures.
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The authors in [4] provided a large family of non-Kähler isotropic Kähler
Hermitian structures having interesting curvature properties. They considered
Walker metrics on 4-manifolds together with the proper almost complex struc-
ture and obtained a local description of those metrics which are Hermitian or
locally conformally Kähler and self-dual, -Einstein or Einstein. They also con-
structed examples of indefinite Einstein strictly almost Hermitian structures
showing that the integrability result given by Kirchberg in [8] does not hold for
metrics of signature (2, 2).

In [6], the authors studied a particular almost complex structure J . For
this, they explicitly solved the PDEs for the fundamental 2-form to be closed
(the almost Kähler condition), and they gave the integrability condition of J ,
which looks similar to the almost Kähler conditions. They also obtained Walker
metrics which can be Hermitian with respect to such J .
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