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Abstract 

The first part of this work established, with examples, the fact that there are more than 

one non-abelian isomorphic types of groups of order n = sp, (s,p) = 1, where s<p and  

p  1 (mod s) for 100 < p < 4000. The factors s and p are distinct primes. Specifically 

considered here are groups of order n = 2p, 3p, 5p, 7p, 11p and 13p. It was discovered 

that the number of non-abelian isomorphic types of groups of order n = sp, s<p 

increased as n increased. The defining relations of such non-abelian isomorphic 

groups were outlined and a scheme developed to generate the numbers for the non-

abelian isomorphic types of such groups. The scheme helped in generating many 

examples of non-abelian isomorphic types of such groups. The situation where p  k 

(mod s), k > 1 was worked out and such groups have no non-abelian isomorphic 

types. This gave credence to the fact that a group of order 15 and its like do not have a 

non-abelian isomorphic type. It also generated the non-abelian isomorphic types of 

groups of order n = spq, where s, p and q are distinct primes considering the 

congruence relationships between the primes.  It was seen that there are more non-

abelian isomorphic types when q 1 (mod p), q  1 (mod s) and p  1 (mod s). When 

q is not congruent to 1 modulo p but congruent to 1 modulo s fewer non-abelian 

isomorphic types were obtained. Moreover, if q is not congruent to 1 modulo p, q not 

congruent to 1 modulo s, and p not congruent to 1 modulo s, there cannot be a non-

abelian isomorphic type of a group of order n = spq. In this case groups of order  

n = 2pq, 3pq, 5pq and 7pq were considered. Later, proofs of the number of non-

abelian isomorphic types for n =sp and n =spq using the examples earlier generated 

were given. 
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CHAPTER ONE 

INTRODUCTION 

1.0 BACKGROUND OF STUDY 

Group Theory is relevant to every branch of Mathematics where symmetry is studied. 

Every symmetrical object is associated with a group. It is due to this association that 

groups arise in different areas like Quantum Mechanics, Crystallography, Biology, 

and even Computer Science. There is no such easy definition of symmetry among 

objects without leading its way to the theory of groups. Classifying groups arise when 

trying to distinguish the number of isomorphic groups of order n. In organic 

chemistry, conformal factors affect the structure of a molecule and its physical, 

chemical and biological properties. For instance, the position of atoms, relative to one 

another affects the structural formula of Hydrogen peroxide, H2O2. We could write 

two different planar geometries that differ by a 180
0
 rotation about 0 – 0 bond. 

According to Francis A Carey (2003) one could also write an infinite number of non 

planar structures by tiny increments of rotation about the 0 – 0 bonds; Francis A 

Carey (2003). Groups may be presented in several ways like multiplication table, by 

its generators and relations, by Cayley graph, as a group of transformations (usually a 

geometric object), as a subgroup of a permutation group, or a subgroup of a matrix 

group to mention a few. 

 

1.1 STATEMENT OF  THE PROBLEM 

Classifying groups arise when trying to distinguish the number of isomorphic types of 

a group of order n. 

Hall Jnr and Senior (1964) used invariants as the number of elements of each order k 

(k small) to determine whether two groups of order 2
n
 (n < 6) are isomorphic. Philip 

(1988) in his article developed a systematic classification theory for groups of prime 
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power orders. For certain classes of groups, there exists practical methods to list such 

groups. Newman and O’Brien (1990) introduced an algorithm to determine up to 

isomorphism the groups of prime-power order. The determination of all groups of a 

given order up to isomorphism is an old question in group theory. It was introduced 

by Cayley who constructed the groups of order 4 and 6 in 1854. 

 

MeubÜser (1967) listed all groups of order at most 100 except for 64 and 96. The 

groups of order 96 were added by Lane (1982). 

Moreover, for factorizations of certain orders, the corresponding groups have been 

classified, e.g. Holder (1983) determined the groups of order pq
2
 and pqr, and James 

(1980) determined the groups of order p
n
 for odd primes and n < 6. 

Recently, algorithms have been used to determine certain groups. For example 

O’Brian (1991) determined the 2-groups of order at most 2
8
 and the 3-groups of order 

at most 3
6
. Moreover, Betten (1996) developed a method to construct finite soluble 

groups and used his construction to construct soluble groups of order at most 242. 

Determination of isomorphic types has been a comparatively difficult problem as 

there was no method that is sufficiently effective. 

Most of the classifications of the non-abelian isomorphic types of certain finite groups 

were done for groups of small orders. This is possibly due to the complexity of 

computation as the factors increase. The problem then arise to find the non-abelian  

isomorphic types of groups of higher orders which can be factorized into two or three 

distinct primes taking into consideration of the relationship between the prime factors. 

The need also arise to construct a suitable computer program to assist in solving such 

a problem. 

Hence, the statement of the problem is “Determination of the Number of non-Abelian 

Isomorphic Types of Certain Finite Groups”. 
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1.2 AIM AND OBJECTIVES 

The aim of this thesis is to determine the number of non-abelian isomorphic types of 

certain finite groups of higher orders. 

We hope to achieve the following objectives: 

(i) Finding relationship, through series of examples, of the number of non-

Abelian Isomorphic types of groups of order n=sp and the congruence relation 

between the primes s and p.  

(ii) Determining the proof for the number of non-Abelian isomorphic types in 

each congruence relationship and stating their defining relations. 

(iii)    Determine and design a suitable computer program that will help in working 

out the number relationship between such primes and generating the numbers 

for the non-Abelian isomorphic types. 

(iv) Finding the non-Abelian isomorphic types of groups of order n = spq where 

s,p and q are distinct primes and determining their defining relations. 

 

1.3 SCOPE OF THE STUDY 

The scope here is limited to the determination of the number of non-Abelian 

isomorphic types of groups of order 2p, 3p, 5p, 7p, 11p, 13p where p < 4000. Also 

considered are groups of order 2pq, 3pq, 5pq and 7pq. The primes p and q are distinct 

primes with p < q. 

 

1.4  DEFINITION OF THE CONCEPT OF ISOMORPHIC GROUPS 

The concept of group isomorphism can be explained with chessboard that has four 

plane symmetries. The identity, rotation r through  about its centre, and the 

reflections 21 , qq  in its two diagonals form a group under composition whose 
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multiplication is given in table 1 below.   

 

Table 1.1:  Four plane symmetries of a chessboard   

 

  e  r  1q  2q  

e  e  r  1q  2q  

r  r  e  2q  1q  

1q  1q  2q  
e  r  

2q  2q  1q  r  e  

 

It is easy to check that multiplication modulo eight makes the numbers 1,3,5,7 into a 

group.   

There is an apparent similarity between these two groups if we ignore their origins.  In 

each case the group has four elements, and these elements appear to combine in the 

same manner.  Only the way in which the elements are labeled distinguishes one table 

from the other. 

 

Label the first group G, the second G', and the correspondence. 

7,5,3,1 21  qqre , 

This correspondence is called an isomorphism between G and G'. It is a bijection and 

it carries the multiplication of G to that of G'.  Technically they are isomorphic in the 

following sense. 

Two groups G and G' are isomorphic if there is a bijection   from G to G' which 

satisfies       yxxy    for all Gyx , .  The function   is called an isomorphism 

between G and G'. 
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Hence the isomorphism as a bijection implies that G and G' must have the same order.  

It sends the identity of G to that of G'.  Isomorphism also preserves the order of each 

element (Armstrong, 1988).  

 

1.4.1 EXAMPLES 

(i) The group of all real numbers with addition, (R,+), is isomorphic to the group of 

all positive real numbers with multiplication ( )×+ ,R . 

Proof:  Define ( )+,R:f  →( )×+ ,R   by f(x) = e
x
.  For elements x, y in R then  

f(x) = f(y) then e
x
 = e

y
, so x = y.  This implies that x ≠ y, then f(x) ≠ f(y) i.e., e

x
 ≠ e

y
. 

If r is an element o R
+
, then f(ln r) = r, where ln r belong to R showing that f is onto 

R
+ 

.  Again, for elements x, y in R, we have  

           f(x + y) = e
x+y

 = e
x
.e

y
 = f(x)f(y).   

Hence (R,+) is isomorphic to( )×+ ,R . 

(ii)  Every cyclic group of infinite order is isomorphic to the additive group I of 

integers 

Proof: Consider the infinite cyclic group G generated by a and the mapping 

  n → a
n
,  ∈n  I of I into G. 

Now, this mapping is onto since any n in I is mapped to exactly one a
n
. 

Moreover, it is one-to one since if s > t we have s ↔ a
s
 and t ↔ a

t
, then  

a
s-t

 =1 and G would be finite.  Hence if s ‡ t, then a
s
 ≠ a

t
. 

Finally, s + t ↔ a
s+t

 = a
s
.a

t
.  Hence the mapping is an isomorphism, that is  

I    G. 

(iii)  The group Z of integers (with addition) is a subgroup of R, and the factor group 

R/Z is isomorphic to the group S' of complex numbers of absolute value 1 

(with multiplication): 
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R/Z  S' 

 An isomorphism is given by 

  f(x+Z) = e
2xi 

 for every x in R. 

Proof:  We only need to show that for any k ε Z, then f(x + k) = e
2i(x +k)

 = e
2xi +2iπk

  

         = e
2xi

. e
2ki

 = e
2xi

(Cos2πk + iSin2πk) = e
2xi

.  

If x ≠ y then f(x + k) ≠ f(y + k), i.e., e
2xi

 ≠ e
2yi

 .  Also for z ε R, then f(ln(z + k))  

          = e
ln(z + k)

 = z + k.  

(iv) The Klein four-group is isomorphic to the direct product of two copies of  

            Z2 = Z/2Z and can therefore be written Z2xZ2. Another notation is D2, because 

            it is a dihedral group. 

(v)  Generalizing this, for all odd n, D2n is isomorphic with the direct product of  

        Dn and Z2. 

 

1.4.2 PROPERTIES OF ISOMORPHIC GROUPS 

(i) The Kernel of an isomorphism from (G,*) to (H, ʘ), is always {eG} where eG 

is the identity of the group (G,*). 

(ii) If (G,*) is isomorphic to (H,ʘ), and if G is Abelian then so is H. 

(iii) If (G,*) is a group that is isomorphic to (H,ʘ) [where f is the isomorphism], 

then if a belongs to G and has order n, then so does f(a) 

(iv) If (G,*) is a locally finite group that is isomorphic to (H,ʘ), then (H,ʘ), is also 

locally finite. 

We state mostly without proof certain fundamental results of group theory which we 

shall be needed: 
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1.4.3 THEOREM (LAGRANGE’S THEOREM) 

Let G be a group of finite order n, and H a subgroup of G.  The order of H divides the 

order of G. 

 

1.4.4 THEOREM (CAUCHY’S THEOREM) 

If p is a prime number and 
Gp

 then G has an element of order p. 

 

1.4.5 THEOREM (SYLOW’S FIRST THEOREM)  

If p
a
 is the highest power of a prime dividing the order of a group G, then G has at 

least one subgroup of order p 

 

1.4.6 DEFINITION 1 

For any prime, p, we say that a group G is a p-group if every element Gyx , in G has order 

p
k
, for some integer k 

 

1.4.7 DEFINITION 2 

Let G be a finite group of order n = pq, where (p,q) = 1.  Then any subgroup of order 

p
m

 is called a Sylow p-subgroup of G. 

 

1.4.8.   DEFINITION 3  

Let a be an element of a group G and e the identity element of G.  The smallest 

positive integer n such that a
n
 = e is called the order of a.  The order of a group G, 

written G  is the cardinal number of elements of G. G is said to be finite or infinite 

according as its order is finite or infinite (Kuku, 1980). 

 

1.4.9 DEFINITION 4  

Let G be a group and let a and b be elements of G then G contains both a  and b .  
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Other elements of G depends on the relation between a and b.  The smallest subgroup 

generated by a anb b is denoted by .b,a  If ab = ba then G is said to be Abelian or 

commutative.  If baab≠  then G is said to be non-Abelian or is said to be not 

commutative. 

 

1.4.10 THEOREM (SYLOW’S SECOND THEOREM)  

All Sylow p-subgroups of a finite group G belonging to the same prime are conjugate 

with one another in G. 

 

1.4.11 THEOREM (SYLOW’S THIRD THEOREM) 

Let r be the number of Sylow p-subgroups of G, then r is an integer of the form 1+kp 

and r is a factor of the order of G. 

 

1.4.12 THEOREM (A BASIS THEOREM FOR FINITE ABELIAN GROUPS) 

Every finite Abelian group is a direct sum of primary cyclic groups. 

 

1.4.13 THEOREM (ANOTHER BASIS THEOREM FOR FINITE ABELIAN GROUPS) 

Every finite Abelian group A can be decomposed into a direct sum of cyclic groups. 

 121
....




smmm CCCA
 

Where imm 11  for all i= 1,2,…,s-1 

 

1.4.14 THEOREM 

If H and K are normal subgroups of G such that 1KH    then any element Gyx , of H 

commutes with any other element y of K. 

 

PROOF:  

For any K,y and Hx  consider the commentator 
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     111111   yyxxyxyxyxyxz  and notice from the first factorization 

and the normality of K that y
-1
K, Gyx ,y Gyx ,-1 

K  zK. 

Furthermore, since H is normal, we have from the second factorization that  

HzHyyxHx   11,  

Hence, we deduce that  

  1z1KHz   

Whence 

 yxxy   as asserted 

 

1.4.15   PROPOSITION  

Let G be a finite group and K any normal subgroup contained in the centre of the 

group G.  Then if G is non-Abelian the quotient group G/K cannot be cyclic.  

 

PROOF: 

Suppose  

  Kt,...,tK,KK/G 1n  

Then for any Gyx ,  we have 

Gyx ,= ,vty,ut rs   

For some Kv,u   and thus 

Gyx ,y = t
s
ut

r
v = t

k+r
uv = t

r+s
vu = t

r
vt

s
u = y Gyx ,  

(Since u, v permute with t). 

This contradicts the non-Abelian hypothesis on G. 

The problem of explicitly constructing all the groups of a given finite order has a long 

and somewhat chequered history; its study was initiated by Cayley in 1864 when he 

determined the groups of order at most 6.  The aim is to determine a complete and 
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irredundant list of the groups of a given order:  a representative of each isomorphism 

type present.  It is usually comparatively easy to generate a complete list; the 

difficulty lies in the reduction to distinct isomorphism types (Hall M., 1976).  

 

1.4.16 THEOREM (FROBENIUS) 

 Let H be a p-subgroup of order p
a
 in G.  Let K, of order p

b
, be the intersection of H 

and some other p-Sylow subgroup H' of G such that no subgroup of G containing K 

and of order greater than p
b
 is contained in any two p-Sylow subgroups.  Then G must 

contain an element of order prime to p which permutes with K but does not permute 

with H. 

 

1.4.17 REMARK 

 a) The subgroup K is a subgroup of maximum order common to both H and H', it 

does not necessarily have maximal order among the intersections of any two p-Sylow 

subgroups. 

b) There is a parallel theorem when p-Sylow subgroups H and H' are both Abelian.  In 

this case, every element of K is self-conjugate in the subgroup gp{H,H'}. 

Thus if N is the greatest subgroup of G in which every element of K is self-conjugate, 

then N contains two and hence  

 1 + kp p-Sylow subgroups. 

 That is, N has order p
a
m’(1+kp) where p

a
m’ is the order of the greatest subgroup of 

the normalizer of H (of order p
a
m) in which every element of K is self-conjugate.  

Thus, in this case, there is an element of order p which permutes with every element 

of K. 

 

1.4.18 POLYNOMIAL: 

A function of z of the form 
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P(z) = a0 + a1z +  a
2
z

2
 + … + anz

n,
  

in which an ≠ 0 is called a polynomial of degree n in z. 

 

 

1.4.19 THEOREM 

Every polynomial of degree n (where n > 0) has at least one root and at most n roots 

(Mervin  1986). 
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CHAPTER TWO 

LITERATURE REVIEW  

 

2.0 MULTIPLICATION TABLES OF GROUPS OF ORDER 2 TO 10. 

In his work, Wavrik J. (2002) developed a JAVA applet that allows experimentation 

with group multiplication tables. Here we present some of his work for groups of 

order 6 and 10.  It was noted that any group of order 6 and 10 is isomorphic to one of 

the groups given below and some their tables are outlined in Tables 2.1 and 2.2 

below. 

 

C6, the cyclic group of order 6 

Described via the generator a  

with relation a
6
 = 1: 

Elements: 

Order 6: a, a
5
 

Order 3: a
2
, a

4 

Subgroups: 

Order 6: {1, a, a
2
, a

3 
,a

4
, a

5
} 

Order 3: {1, a
2
, a

4
} 

Order 2: {1, a
3
} 

Order 1: {1} 

 

S3, the symmetric group on three elements  

Described via generator a, b  

with relations a
3
 = 1, b

2
 = 1, ba = a

-1
b: 

Elements: 

Order 3: a, a
2
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Order 2: b, ab, a
2
b

 

Subgroups: 

Order 6: {1, a, a
2
, b, ab, a

2
b} 

Order 3: {1, a, a
2
} 

Order 2: {1, b} {1, ab} {1, a
2
b} 

Order 1: {1} 

Normal subgroups: 

Order 6: {1, a, a
2
, b, ab, a

2
b 

Order 3: {1, a, a
2
} 

Order 1: {1}Table 2.1:  Symmetric group of order 6 

 

 

 

 
X  1 a a

2 
b ab a

2
b

 

1  1 a a
2
 b ab a

2
b 

a  a 
2
 1 ab a

2
b b 

a
2  

a
2
 1 a a

2
b b ab 

b  a a
2
b ab 1 a

2
 a 

ab  ab b a
2
b a 1 a

2
 

a
2
b  a

2
b ab b a

2
 a 1 

 
 

 

C10, the cyclic group of order 10 

Described via the generator a with relation a
10

 = 1: 

 

Elements: 

Order 10: a, a
3
, a

7
, a

9
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Order 5: a
2
, a

4
, a

6
, a

8
 

Order 2: a
5
 

Subgroups: 

Order 10: {1, a, a
2
, a

3
, a

4
, a

5
, a

6
, a

7
, a

8
, a

9
} 

Order 5: {1, a
2
, a

4
, a

6
, a

8
} 

Order 2: {1, a
5
} 

Order 1: {1} 

 

D5, the dihedral group of order ten 

Described via generators a, b 

With relations a
5
 = 1, b

2
 = 1, ba = a

-1
b: 

Elements: 

Order 5:a, a
2
, a

3
, a

4
 

Order 2: b, ab, a
2
b, a

3
b, a

4
b 

Subgroups: 

Order 10: {1, a, a
2
, a

3
, a

4
, b, ab, a

2
b, a

3
b, a

4
b} 

Order 5: {1, a, a
2
, a

3
, a

4
} 

Order 2: {1, b}, {1, ab}, {1, a
2
b}, {1, a

3
b}, {1, a

4
b} 

Order 1: {1} 

Normal subgroups: 

Order 10: {1, a, a
2
, a

3
, a

4
, b, ab, a

2
b, a

3
b, a

4
b} 

Order 5: {1, a
2
, a

3
, a

4
} 

Order 1: {1}. 

 

Table 2.2:  Symmetric group of order 10, S5 
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X  1 a a
2 

a
3
 a

4
 b ab a

2
b a

3
b a

4
b 

1  1 a a
2 

a
3
 a

4
 b ab a

2
b a

3
b a

4
b 

a  a a
2 

a
3
 a

4
 1 ab a

2
b a

3
b a

4
b b 

a
2  

a
2 

a
3
 a

4
 1 a a

2
b a

3
b a

4
b b ab 

a
3
  a

3
 a

4
 1 a a

2
 a

3
b a

4
b b ab a

2
b 

a
4
  a

4
 1 a a

2
 a

3
 a

4
b b ab a

2
b a

3
b 

b  b a
4
b a

3
b a

2
b ab 1 a

4
 a

3
 a

2
 a 

ab  ab b a
4
b a

3
b a

2
b a 1 a

4
 a

3
 a

2
 

a
2
b  a

2
b ab a a

4
b a

3
b a

2
 a 1 a

4
 a

3
 

a
3
b  a

3
b a

2
b ab b a

4
b a

3
 a

2
 a 1 a

4
 

a
4
b  a

4
b a

3
b a

2
b ab b a

4
 a

3
 a

2
 b 1 

 
We now give results on group classification up to isomorphism which are basic to this 

work. 

John R. Durbin (1979) showed the number of isomorphic types of groups of order n 

for each n from 1 to 32 and stated as follows: “There is just one group of order n if 

and only if n is a product of distinct primes k21 p ..., ,p ,p such that jp |  (pi – 1) for  

1 < i < k, 1 < j < k”. 

The above conclusion was reached using groups of orders 15 = 3 x 5, 33 = 3 x 11. 

 

2.1 ISOMORPHIC TYPES OF GROUPS OF ORDER n = pq 

Let G be a group of order n = pq, where p and q are distinct primes with p < q. Then 

by Sylow’s theorem (1.4.5) there must be only one Sylow q-subgroup in G. This 

subgroup  

K = gp{b}, b
q
 = 1, 

and must be normal in G. 
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Moreover, any Sylow p-subgroup must be of the form 

   .1,  paagpH  

 For KG, we must have  

 Kbaa 1

 and  

 t1- bbaa =  

for some integer t. 

Clearly, if t = 1 we have that G in Abelian and so must be of order pq. 

By (1.4.11) there is only one Sylow p subgroup and we have the cyclic group 

situation. 

Suppose 1t≠ then 

 ( ) ktk1_k1_ bbaaaba ==  

 ( ) 2t1_1_22_ babaaaaba ==  

This will be done up to some integer j such that 

  
jtjj_ bbaa = . 

If j = p the following relations will be obtained since a
p
 = 1: 

ptpp_ bbaab ==  

We deduce that 

1_tp

b1=   and so 

  ( ptq -1)  ⇒⇒ tp
  ≡ 1(mod q) 

The solutions of 

  t
p ≡1(mod q) are   ,t,...,t,t,1 p2  

 and with the exception of 1, generate the same group, since the replacement of 

 agpH   replace t by t
j
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Conversely, if pt  ≡ 1(mod q) and  

  abab t=  

then using the multiplication scheme:  

  yxvxxuyxv babaaababa "  

 yvtxu x

ba ++=       

            
xvtyxu ba ++=  

We obtain that G is the semi-direct product: 

 G =K xw H, where the action of   is induced by 

  t1_ bbaaba ==ω  

Thus the following is inferred from the above proof 

 

2.2 PROPOSITION 

There are at most two isomorphic types of groups of order pq, where p and q are 

distinct primes and p<q, namely:- 

(i) The cyclic group of order pq and  

(ii) The non-Abelian semi-direct product 

   agpxbgp   

where  t1_qp bbaa,1ba ===        

t
p
 ≡ 1(mod q) 

 (Michio, 1982). 

For the group of order n = 2p, (2,p) =1, since any group of a prime order is 

necessarily cyclic, it is obvious that subgroups of G of orders 2 and p are cyclic.  

Hence G = C2 x Cp.  By Sylow’s theorem (1.4.5) there must be only one Sp -

subgroup of G, Cp say, such that Cp = gp{b}; b
p
 = 1. 

    1 - q p   and   q mod 1 t   
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This must be normal in G.  Moreover, any other Sylow 2-subgroup will be of the 

form 

 C2 = ‹a ›; a2
=1.   

Hence Cp  G and a
-1

ba Cp.  We need to find the integer r such that a
-1

ba = b
t
 

and t ≠ 1.  If such integer exists, then we have the non-Abelian group of order  

n = 2p.   But if there are p S2 -subgroups of order 2 in G and only one Sp-

subgroup, we will have a total of p(2 - 1) + (p - 1) = p + p - 1 = 2p - 1 elements in 

G excluding the identity element.  This implies that there are p elements of order 2 

in G some of which do not commute with the element b in Cp.  Hence a
-1

ba = b
t
 

for t ≠ 1 and t is such that t
2
  1 (mod p). 

If we take values for t in the interval 1<t<p, it is obvious that only one value will 

satisfy the congruence t
2
  1(mod p) and this value gives the non-Abelian 

isomorphic types of the group G of order n = 2p. 

From the above fact the following Corollary is stated: 

 

2.3 COROLLARY 

There is only one isomorphic class of a group of order 15 which is Abelian and two 

isomorphic types of groups of order 6, 10, 14, 21, 22, and 26, of which one is Abelian 

and the other is non-Abelian.   

 

2.5 GROUPS OF ORDER p
2
q 

Let G be any group of order p
2
q, where p and q are distinct. By a Basis Theorem for 

finite Abelian Groups which states that “Every finite Abelian group is a direct sum of 

primary cyclic groups. The isomorphism classes of Abelian groups of order p
2
q are 

given by the following invariants 

 
and,qp2 ×  .qpp ××

 

The first form is cyclic and the second is not cyclic. 
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Suppose G is a n on-Abelian groups of order 12. 

There are 1 or 4 Sylow 3 – subgroups of order 3 since if r is the number of Sylow p-

subgroups of G, then r is an integer of the form 1+kp and r is a factor of the order of 

G. 

For 4 Sylow 3– subgroups there will be 8 elements of order 3 leaving 4 elements 

which must constitute a unique 2 – Sylow subgroup and therefore normal in G. We 

claim in such a case there can be no element of order 4, x say; for otherwise, for some 

element a which is of order 3 we have, since ‹ x › is normal in G, that a
-1  bx .mod12 a =  bx .mod12  or  bx .mod12 3

, 

(the only powers of  bx .mod12  of order 4). But 

 a
-1  bx .mod12 a=  bx .mod12  

implies that G is Abelian, a contradiction. 

Furthermore 

 a
-1  bx .mod12 a=  bx .mod12 3

 

 a
-2  bx .mod12 a

2
=a

-1
(a

-1  bx .mod12 a) a=a
-1

-  bx .mod12 3
a=(  bx .mod12 3

)
3
=  bx .mod12 9

=  bx .mod12 . 

Hence 

  bx .mod12 3
=a

-1  bx .mod12 a=a
-4  bx .mod12 a

4
=a

-2  bx .mod12 a
2
=  bx .mod12 , 

which is absurd. Hence, we must have a
-1  bx .mod12 a=  bx .mod12  and so G would necessarily be 

Abelian. Hence, we must have that the 2-Slow subgroup is of the Klein type, say  

K= ‹  bx .mod12 ,y ›,  bx .mod12 2
=1, y

2
=1;  bx .mod12 y=y  bx .mod12 . 

If z is any element of order 3 in G, it must permute the three elements of order 2 in K 

amongst themselves: that is we may set z
-1  bx .mod12 z=y; z

-1
yz=  bx .mod12 y, 

and obtain a single new type: 

 

(iii) G3= ‹  bx .mod12 ,y,z ›,  bx .mod12 2
=1,y

2
=1,z

3
=1;z

-1  bx .mod12 z=y,z
-1

yz=  bx .mod12 y. 

Since the Sylow 2 – subgroup is normal if the Sylow 3-subgroup is not, it 

follows that if the S2 – subgroup is not normal, then the 3-Sylow subgroup 
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must be normal. Thus, we now assume that the 3-Sylow subgroup is unique, 

and hence normal by Sylow’s Second Theorem which states that “all Sylow  

p-subgroups of a finite group G belonging to the same prime are conjugate 

with one another in G. We may thus consider 

 K= ‹ a ›; a3
=1 

and note that either the S2 – subgroup is cyclic or it is non-cyclic since there 

are two isomorphic types of groups of order 4, 9 and 25. 

in the former situation, we have an element b of order 4 and since G is non-

Abelian we must have, by virtue of the normality of K, 

 b
-1

ab=a
4
=a

-1
, 

Moreover,  

 b
-2

ab
2 

= a
4 

= a, 

and deduce that b
2
 commutes with a and the two together generate a cyclic 

subgroup of order 6. We therefore have the following isomorphic type: 

 

(iv) G4= ‹ a,b ›,a3
=1,b

4
=1;b

-1
ab=a

-1
. 

Suppose now that we have an S2 – subgroup of the form  

 H= ‹ b,c ›,b2
=1,c

2
=1;bc=cb. 

Then since G is non-Abelian at least one of b or c does not commute with a. 

Suppose 

 b
-1

ab = a
2
, then c

-1
ac = a or c

-1
ac = a

2
. 

In the former we have 

 (bc)
-1

a(bc) = c
-1

b
-1

abc = a
2
 

Also if 

 c
-1

ac = a
2
, then 

 (bc)
-1

a(bc) = c
-1

b
-1

abc = c
-1

a
2
c = (a

2
)
2
 = a

4 
= e. 
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Hence we have the following isomorphic type 

(v) G5= ‹ a,b,c ›,a3
=1,b

2
=1,c

2
=1;bab = a

-1
,bc = cb, ca = ac. 

  = ‹ a,b › x ‹ c › = D3xC2. 

 If we set 

   bx .mod12 =ac, then  bx .mod12 2
=a

2
=a

-1
,  bx .mod12 3

=e; 

 also we may set 

  y=b 

 and deduce that 

  y  bx .mod12 y=bacb=a
-1

c=  bx .mod12 2
,  bx .mod12 3

=y
5
=1. 

 Thus 

  ‹ a,b,c ›= ‹  bx .mod12 ,y ›,  bx .mod12 6
=1,y

2
=1;y  bx .mod12 y=  bx .mod12 -1

 

   D6, 

 which is the dihedral group of order 12. Hence we have proved the following: 

 

2.5.1 PROPOSITION 

There are five isomorphism classes of groups of order 12, two are Abelian while the 

remaining three are non-Abelian (Okorie and Obi, 1991). 

 

2.5.2 SUMMARY OF DEFINING RELATIONS 

(i) G1= ‹  bx .mod12  › ,  bx .mod12 12
=1. 

(ii) G2= ‹  bx .mod12 ,y ›,  bx .mod12 6
=1,y

2
=1;  bx .mod12 y=y  bx .mod12 . 

(iii) G3= ‹  bx .mod12 ,y,z ›,  bx .mod12 2
=1,y

2
=1,z

3
=1;z

-1  bx .mod12 z=y,z
-1

yz=  bx .mod12 y,  bx .mod12 y=y  bx .mod12 . 

(iv) G4= ‹  bx .mod12 ,y ›,  bx .mod12 4
=1,y

3
=1;  bx .mod12 -1y  bx .mod12 =y

-1
. 

(v) G5= ‹  bx .mod12 ,y ›,  bx .mod12 6
=1,y

2
1;y  bx .mod12 y=  bx .mod12 -1

. 

 

2.5.3 REMARK 

The group G3 has no subgroup of order 6; this is the only class of groups of order 12 
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with this property and provides the first counter example to the converse of 

Lagrange’s Theorem. Thus, it is no true in general that if m is a factor of n, then any 

group of order n has some subgroup of order m. 

 

Next, suppose G is a non-Abelian group of order 18=3
2
x2. 

By (1.4.11) there are 1, 3 or 9 Sylow 2 – subgroups. Also, we have exactly one 3 – 

Sylow subgroup. If there were only 1 Sylow 2-subgroup, then by Proposition (1.4.15) 

G would be a direct product of the form 

 C2xH, 

where H is the unique 3-Sylow subgroup of order 9=3
2
 which is Abelian. Thus, it 

follows that if G is non-Abelian we need consider cases in which the Sylow               

3-subgroup is normal in G. If the subgroup K of order 9 were cyclic, we may present 

this subgroup by 

 K= ‹  bx .mod12  ›,  bx .mod12 9
=1. 

Also by Cauchy’s Theorem (1.4.4) we have some element y of order 2 in G. 

Clearly, y  K.  

Moreover, KG. 

  y
-1

Ky = K 

and in particular, we have  

 y
-1  bx .mod12 y=  bx .mod12 t

, where 

  bx .mod12 =y
-2

=  bx .mod12 y
2
= 

2tx  (since y
2
=1). 

We deduce that 

  bx .mod12 =
2t  bx .mod12  

and hence 

 t
2 
1 (mod. 9). 
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The solutions of this congruence relations in the range 1t<9 are 1 and 8. Since t =1 

entails that G is Abelian, it follows that 

 y
-1  bx .mod12 y=  bx .mod12 8

=  bx .mod12 -1
 

and we have 

 

(iii) G= ‹  bx .mod12 ,y›,  bx .mod12 9
=1,y

2
=1;y  bx .mod12 y=  bx .mod12 -1

. 

 The above class is the class of the dihedral group of order 18, D9. 

On the other hand let the 3-Sylow subgroup be of the form 

  N= ‹  bx .mod12 ,y ›  bx .mod12 3
=1,y

3
=1;  bx .mod12 y=y  bx .mod12 . 

Then, since we have some element z of order 2, and since the non-Abelian 

nature of G forbids z commuting with both  bx .mod12  and y we must have the 

following possibilities: 

(a)  bx .mod12 z=z  bx .mod12 , zyz = y
-1

. 

(b) z  bx .mod12 z=  bx .mod12 -1
, zyz = y

-1
. 

Thus we have the following classes 

 

(iv) G4= ‹  bx .mod12 ,y,z ›,  bx .mod12 3
=1,z

2
=1;  bx .mod12 y = y  bx .mod12 , z  bx .mod12  =  bx .mod12 z, zyz = y

-1
. 

 = ‹  bx .mod12  › x ‹,z › 

 C3xD3. 

 

(v) G5= ‹  bx .mod12 ,y,z ›,  bx .mod12 3
=1,y

3
=1,z

2
=1;  bx .mod12 y=y  bx .mod12 ,z  bx .mod12 z=  bx .mod12 -1

,zyz=y
-1

. 

 We have therefore proved the following 

 
2.5.4 PROPOSITION 

There are five classes of groups of order 18, two are abelian of which one is cyclic, 

and three are non-Abelian. 
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2.5.5 SUMMARY OF DEFINING RELATIONS 

(i) G1= ‹  bx .mod12  ›,  bx .mod12 18
=1. 

(ii) G2= ‹  bx .mod12 ,y ›,  bx .mod12 9
=1,y

2
=1;  bx .mod12 y=y  bx .mod12 . 

(iii) G3= ‹  bx .mod12 ,y ›,  bx .mod12 9
=1,y

2
=1;y  bx .mod12 y=  bx .mod12 -1

. 

(iv) G4= ‹  bx .mod12 ,y,z ›,  bx .mod12 3
=1,y

3
=1,z

2
=1;  bx .mod12 y=  bx .mod12  

zyz=y
-1

,z  bx .mod12 =  bx .mod12 z. 

(v) G5= ‹  bx .mod12 ,y,z ›,  bx .mod12 3
=1,y

3
=1,z

2
=1;  bx .mod12 y=y  bx .mod12 ,zy=y

-1
,z  bx .mod12 z=  bx .mod12 -1

. 

Again, suppose G is a non-Abelian group of order 20=2
2  bx .mod12 5. 

By (1.4.11) there are exactly 1 Sylow 5-Subgroup, 

 ‹  bx .mod12  ›, y5
=1, 

  bx .mod12 -2
y  bx .mod12 2

=y
4
, 

  bx .mod12 --3
y  bx .mod12 -3

=y
2
. 

Since  bx .mod12  and  bx .mod12 3 
are alternative generators of the 2-Sylow subgroup, it 

follows that the two sets of relations give rise to the same isomorphism 

class. 

Moreover, 

 y  bx .mod12 =  bx .mod12 y
4
  bx .mod12 -1

y  bx .mod12 =y
4, 

  bx .mod12 -2
y  bx .mod12 2

=y 

  bx .mod12 -3
y  bx .mod12 3

=y
4
. 

That is, in this case,  bx .mod12 2
 commutes with y and we do obtain a different 

isomorphic type. 

Hence we have the following isomorphic types. 

(i) G3= ‹  bx .mod12 ,y ›,  bx .mod12 4
=1,y

5
=1;y  bx .mod12 =  bx .mod12 y

2
. 

(ii) G4= ‹  bx .mod12 ,y ›,  bx .mod12 4
=1,y

5
=1;y  bx .mod12 =  bx .mod12 y

4
. 

If c is an element of order 5 in G then a and b cannot both commute with c, 
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since G is non-Abelian. We have the following possibilities 

(1) ac=ca,bc=c
4
b. 

(2) ac=c
4
a,bc=c

4
b. 

the first relation entails: 

 abc=c
4
ab; 

and the second ensure that  

 abc=c
16

ab=c ab, 

so that the two possibilities yield the same isomorphic type. Moreover, we 

may take one of a or b arbitrarily as the generator permuting with c. Hence we 

have 

(iii) G5= ‹a,b,c›, c5
=1, a

2
=1, b

2
=1, (ab)

2
=1; ac=c

4
a, bc=cb. 

= ‹x,y ›,  bx .mod12 2
=1, y

10
=1;  bx .mod12 y  bx .mod12 =y

9
=y

-1
, 

Where we set x=a, y=bc. 

It follows that G5 is the dihedral group, D10, of order 20. We have proved the 

following 

 

2.5.6 PROPOSITION 

There are five types of groups of order 20, two are Abelian of which one is cyclic and 

three are non-Abelian. 

 

2.5.7 SUMMARY OF DEFINING RELATIONS 

(i) G1 = ‹a ›, a20
=1. 

(ii) G2 = ‹a,b ›, a5
=1, b

4
=1; ab=ba. 

(iii) G3 = ‹  bx .mod12 ,y › ,  bx .mod12 4
=1, y

5
=1;  bx .mod12 y=y

2  bx .mod12  

(iv) G4= ‹  bx .mod12 ,y › , y5
=1,  bx .mod12 4

=1;  bx .mod12 y=y
4  bx .mod12 . 

(v) G5 = ‹  bx .mod12 ,y ›,  bx .mod12 2
=1, y

10
=1;  bx .mod12 y  bx .mod12 =y

-1
. 
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Furthermore, suppose G is a non-Abelian group of order 28=2
2
 x 7. 

By Sylow’s Third Theorem there are 1 or 7 Sylow 2-subgroups and only 1 Sylow 

7-subgroup, 

 ‹y ›, y7
=1, 

which is normal in G. 

The situation where we have 1 Sylow 2-subgroup will not be considered since G 

will be Abelian by Another Basis Theorem for Finite Abelian Groups. We 

consider 2-Sylow subgroups being either cyclic or the Klein 4-group. 

Suppose any Sylow 2-subgroup is cyclic, say 

 K= ‹  bx .mod12  › ,  bx .mod12 4
=1. 

Since ‹ y ›, is normal in G we must have  bx .mod12 -1
y  bx .mod12 =y

t
 

for some integer t. 

Moreover, since 

  bx .mod12 4
=1 

commutes with y, we deduce that 

 
4tyy=  

hence that 

t
4 
1 (mod. 7). 

A simple computation shows that 

 t=1 or 6. 

Since our group is non-Abelian we discard the possibility that t=1 and obtain a 

single isomorphic type. 

 

(iii) G3=‹  bx .mod12 ,y ›;  bx .mod12 4
=1, y

7
=1;  bx .mod12 -1

y  bx .mod12 =y
-1

. 

 For the situation where the Sylow 2-subgroup is the Klein 4-group we may 



 

 

39 

write 

K= ‹a,b ›, a2
=1, b

2
=1, (ab)

2 
= 1. 

Then a and b cannot both commute with y since G is non-Abelian. 

We have the following possibilities 

(1) ay = ya, by=y
6
b. 

(2) ay = y
6
a, by=y

6
b. 

The first relation shows that 

 aby = y
6
ab, 

and the second ensures that 

 aby = y 
36

ab = yab. 

That is, the two possibilities yield the same isomorphic type. Hence we 

have  

 

(iv) G4= ‹a,b,y ›, y7
=1,a

2
=1,b

2
=1; (ab)

2
=1, ay=ya, byb=y

-1
. 

We can write 

G4 = ‹u,v › , u2
=1, v

14
=1; uvu=v

-1
, 

Where we set 

 u=b, v=ay. 

In the later presentation, G4 is revealed as the dihedral group, D14 of 

order 28. 

We have therefore proved the following 

 

2.5.8 PROPOSITION 

There are four classes of groups of order 28, one is cyclic, one is Abelian and two are 

non-Abelian. 
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2.5.9 SUMMARY OF DEFINING RELATIONS 

(i) G1 = ‹  bx .mod12  › ,  bx .mod12 28
=1

. 

(ii) G2 = ‹a,b ›, a4
=1, b

7
=1; ab=ba.

 

(iii) G3 = ‹  bx .mod12 ,y ›,  bx .mod12 4
=1, y

7
=1;  bx .mod12 y  bx .mod12 =y

-1
.
 

(iv) G4 = ‹u,v ›, u2
=1, v

14
; uvu=v

-1
.
 

Hans, Bettina and O’Brien (1999) announced a significant step in providing a solution 

to the group construction problem in its original form by developing practical 

algorithms to construct or enumerate the groups of a given order in one of their works. 

They enumerated the 49487365422 groups of order 2
10

 and determined explicitly the 

423164062 remaining groups of order at most 2000. Summary of their findings is 

listed in the table below. 

In her work, (Manalo ,2001) presented a systematic method for classifying groups of 

small orders. Classifying groups usually arise when trying to distinguish the number 

of non-isomorphic groups of order n. She started by developing a sample run of 

Groups 32 program which shows the orders of the elements for the group S3 and C4. 

The groups 32 package can be accessed at http://www.math.ucsd.edu/ujwavrik the 

orders command tells us the number of elements of each orders of the group. 

 

Hans (2001) introduced three practical algorithms to construct certain finite groups up 

to isomorphism. The first one can be used to construct all soluble groups of a given 

order. This method can be restricted to compute soluble groups with certain properties 

such as nilpotent, non-nilpotent or super soluble groups. The second algorithm can be 

used to determine the groups of order p
n
q with a normal Sylow subgroup for distinct 

primes p and q. The third method is a general method to construct finite group used to 

compute insoluble groups the above mainly targets groups of prime orders which are 

http://www.math.ucsd.edu/ujwavrik
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useful in the area of determining the subnormal series. The list of their ten most 

difficult orders is shown in Table 7 below. 

 
Table 2.3:  Ten most difficult orders 

 
 
 

Order  Number 

2
10  

49487365422 

2
9
.3  408641062 

2
9  

10494213 

2
8
.5  1116461 

2
8
.3  1090235 

2
8
.7  1083553 

2
7
.3.5  241004 

27.3
2  

157877 

2
8  

56092 

2
6
-.3

3  
47937 

 

Audu (1988b) found the number of transitive p-groups of degree p
2
. Audu and 

Momoh presented the classification of p-groups of degree p
3
.  

Most of the work in group classification up to isomorphic looked at groups of orders 

that are powers of a prime. It therefore became pertinent to work at groups of orders a 

product of primes such as sp, spq where s,p and q are distinct primes with a view of 

determining their non-Abelian isomorphic types. The congruence relationship 

between these primes, that is for p  k (mod s) where k is an integer 1  k< s was 

mainly used. This helped to determine the number of non-Abelian isomorphic types in 
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each congruence class and the values of k that will guarantee non-existence of non-

Abelian isomorphic type. 
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CHAPTER THREE 

  METHODS AND GENERATION OF NON-ABELIAN ISOMORPHIC TYPES 

 

Groups factorizable into products of two primes s and p and s,p and q respectively 

were mainly considered. The use of the list of primes listed in Appendix 1 and the use 

of the conventional ways of determining the non-abelian isomorphic groups of such 

orders will also be made. 

The scheme in Appendix II was developed to determine the numbers of integer t 

whose powers of s gave a remainder modulo 1 after division by p in each case. 

It is written with HTML and PHP and PHP is Hyper Text Preprocessor and hosted at 

http://www.cenpece.org/modulo/. HTML is used because it was expected to run on a 

web browser which is the purpose of maximizing resources which are readily 

available on web browsers and can always be updated. PHP is a programming 

language which shares similar syntax with C++, C# and other generic languages. PHP 

runs seamlessly with database applications such as MySQL  and Oracle Database. 

It can be run on any kind of system with any form of internet connection or 

connection of an apache server. 

The congruence modulo project can be extended to store a couple of values in the 

database to make it better for future usage. 

Actually, when a group of order is n factorizable into two prime sp such that  

p  1 (mod s) and through the relation t
s
   1 (mod p), the scheme gives all the 

possible values of r in the interval 1< t < p. We will, however, not only outline 

different values of t but will also put up defining relations of such non-Abelian 

isomorphic types that would be obtained from different values of r. 

This was also done for cases where p   k (mod s) for k > 1. 
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3.0 NON ABELIAN ISOMORPHIC TYPES OF SOME GROUPS OF ORDER 2p. 

Here the non-Abelian isomorphic types of some groups of order 2p, where (2, p) = 1 

and p  1 (mod 2) were obtained. Actually primes numbers not equal to 2 are 

congruent to1 modulo 2.  We shall be using elements a and b as generators of the 

groups until otherwise stated. 

To obtain the non-Abelian group of order 6, we first observe that 6 = 2 x 3 and that a 

group G of order 6, can be isomorphic to direct product of two cyclic groups of orders 

3 and 2. Hence G = {e, a, a
2
, b, ba, ba

2
}, where a  C3 such that a

3
 = e and b  C2 such 

that b
2
 = e 

Since b C3 and to obtain closure for the elements of G, we see that ab = ba or ba
2
, 

but ab = ba will be ruled out since our interest is on the non-Abelian isomorphic type 

of G. 

Therefore, for ab = ba
2
 we have 

 (ab)
2
 = ab ab = abba

2
 = aea

2
 = a

3
 = e. 

Hence G  ‹ a › x ‹ b › such that 

 a
3
 = b

2
 = e and ab = ba

2
. 

For the group G of order 10 we follow similar steps as above to see that G can be of 

the direct products of cyclic groups C5 and C2 of orders 5 and 2 respectively. 

Since if a
5
 = e = b

2
 then ab = ba

2
 or ba

3
 cannot satisfy closure property. That is if      

ab = ba
2
 then 

 (ab)
2
 = abab = ba

2
ab = ba

3
b 

 (ab)
3
 = (ab)

2
ab = ba

3
bab = ba

3
bba

2
 = ba

5
 = b 

 (ab)
4
 = (ab)

3
 = bab = bba

2
 = a

2
 

 (ab)
5
 = (ab)

4
ab = a

2
ab = a

3
b 

and none gave the identity element.  
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Also for ab = ba
3
, (ab)

2
, (ab)

3
 , (ab)

4 
and (ab)

5
 cannot give the identity 

For a = ba
4
 , we have 

 (ab)
2
 = abab = ba

4
ab = b

2
 = e, the identity. 

Hence G = ‹ a, b ›  C5 x C2 = ‹ a › x ‹ b ›. 

This is a non-Abelian isomorphic type of a group G of order 10. 

 

For a group G of order 14 = 2 x 7, we see that G  C7 x C2 

But C7 = {e, a, a
2
, a

3
, a

4
, a

5
, a

6
} and 

 C2 = {e, b} with a
5
 = b

2
 = e. 

Hence G = {e, a, a
2
, a

3
, a

4
, a

5
, a

6
, b, a, a

2
b, a

3
b, a

4
b, a

5
b, a

6
b}. 

Since b  C7 which would have made it to have order different from 2, we show that 

ab = ba
2
, ba

3
, ba

4
, ba

5
 or ba

6
. Close scrutiny shows that 

 ab = ba
6
 and (ab)

2
 = abab = ba

6
ab = b

2
 = e. 

Hence G = ‹ a, b ›  ‹ a › x ‹ b › 

and a
7
 = e = b

2
 , with ab = ba

6
 and (ab)

2
 = e. 

This gave a non-Abeian isomorphic type. 

For a group G of order 22 = 11 x 2 we see that G = ‹ a , b ›  C11 x C2 

with a
11

 = b
2
 = e , ab = ba

10
 and (ab)

2
 = ab ab = ba

10
ab = b

2
 =e. 

We also observed that for any group of order 6, 14, or 22… that  

2
2
  1 (mod 3),        6

2
  1 (mod 7) or 10

2
  1 (mod 11)  

indicating that from        

 1<  t < 7 or 1 < t < 11  

and that t took the value p – 1 in each case. 

Also, 5  1 (mod 2),  

7  1 (mod 2), and 
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11  1 (mod 2). 

Our scheme showed that for any group of order n = 2p, where p is a prime, has only 

one value for t and this value is always p – 1 for distinct values of p. 

  

3.1 NON-ABELIAN GROUPS OF ORDER n = 3p with 100 < p < 2000 and  

       p  1(mod 3)  

 

For groups of order n = 3p, our scheme gave the following results: 

If we take a and b to be elements of order 3 and p respectively,  

i.e. a 
3
 = b

p
 = 1, we have the following non-Abelian isomorphic types for each p:  

For a group of order 21 = 3 x 7, we see that G = ‹ a, b ›  C7 x C3 

with b
7
 = a

3
 = e , ba = ab

2
 and (ba)

3
 = e. 

This is a non-Abelian isomorphic type. 

Hence for a group of order 21 that 2
3
  1 (mod 7). Here again t is within the range  

1 < t < 7. 

For any group G of order 39 = 3 x 13, we have that 

G = C13 x C3  ‹ a › x ‹ b › 

with b
13

 = a
3
 = e and ba = ab

3
 

For closure we have 

 (ba)
2
 = ab

3
ab

3
 = ab

2
ab

6
 = abab

9
 = aab

12
 = a

2
b

12 

 
(ba)

3
 = baa

2
b

12
 = e 

Again for ba = ab
9
, we have 

 (ba)
2
 = ab

9
ab

9
 = ab

8
ab

5
 = ab

7
ab = ab

6
ab

10
 

 = ab
5
ab

6
 = ab

4
ab

2 
= ab

3
ab

11
 = ab

2
ab

7
 

 = abab
3
 = a

2
b

12
 

 (ba)
3
 = baa

2
b

12
 = e 

But 9 is a power of 3 and the first case stands. 
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For any group G of order 57 = 3 x 19, we have that 

 G = C19 x C3  ba ×  

 with b
19

 = a
3
 = e and (i) ba = ab

7
 (ii) ba = ab

11
 where closure properties are as 

follows: 

(i) (ba)
2
 = ab

7
ab

7
 = ab

6
ab

14
 = ab

5
ab

2
 = ab

4
ab

9
 = ab

3
ab

16
 = ab

2
ab

4
 = abab

11
  

                 = a
2
b

18
.  

(ba)
3
 = baa

2
b

18
 = e 

(ii) ba = ab
11

 ; 

(ba)
2
 = ab

11
ab

11
 = ab

10
ab

3
 = ab

9
ab

14
 = ab

8
ab

6
 

= ab
7
ab

17
 = ab

6
ab

9
 = ab

5
ab = ab

4
ab

12
 = ab

3
ab

4
 

= ab
2
ab

15
 =abab

7
 = a

2
b

18
. 

(ba)
3
 = baa

2
b

18
 = e 

 

This shows that G is isomorphic as follows: 

(i) G  ba ×  

with b
19

 = a
3
 = e and ba = ab

7
 , and 

(ii) G  ba ×  

                   with b
19

 = a
3
 = e and ba = ab

11
. 

 

1. For subgroups of orders (3)(109) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
45 

(ii) G2  ba × ; where a 
-1

 ba = b 
63

 

2. For subgroups of orders (3)(139) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
42 
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(ii) G2  ba × ; where a 
-1

 ba = b 
96 

3. For subgroups of orders (3)(199) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
92 

(ii) G2   ba × ; where a 
-1

 ba = b 
106 

4. For subgroups of orders (3)(229) we have 

(i)  G1  ba × ; where a 
-1

ba = b 
94 

3. For subgroups of orders (3)(409) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
53 

(ii) G2   ba × ; where a 
-1

 ba = b 
355

 

4. For subgroups of orders (3)(439) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
171 

(ii) G2 ba × ; where a 
-1

 ba = b 
267 

5. For subgroups of orders (3)(619) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
252 

(ii) G2  ba × ; where a 
-1

 ba = b 
366

 

6. For subgroups of orders (3)(739) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
320 

(ii) G2  ba × , a
-1

 ba = b
418

 

7. For subgroups of orders (3)(829) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
125 

(ii) G2  ba × ; where a 
-1

 ba = b 
703

 

8. For subgroups of orders (3)(919) we have 
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(i)  G1  ba × ; where a 
-1

 ba = b 
52 

(ii) G2  ba × ; where a 
-1

 ba = b 
866

 

9. For subgroups of orders (3)(1009) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
374 

(ii) G2  ba × ; where a 
-1

 ba = b 
634

 

 

10. For subgroups of orders (3)(1129) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
387 

(ii) G2  ba × ; where a 
-1

 ba = b 
741

 

11. For subgroups of orders (3)(1279) we have 

(i)  G1   ba × ; where a 
-1

 ba = b 
504 

(ii) G2  ba × ; where a 
-1

 ba = b 
774

 

12. For subgroups of orders (3)(1459) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
339 

(ii) G2  ba × ; where a 
-1

 ba = b 
1119

 

13. For subgroups of orders (3)(1579) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
639 

(ii) G2  ba × ; where a 
-1

 ba = b 
939

 

14. For subgroups of orders (3)(1699) we have 

(i)  G1  ba × ; where a 
-1

 ba = b 
397 

(ii) G2  ba × ; where a 
-1

 ba = b 
1301

 

15. For subgroups of orders (3)(1999) we have 
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(i)  G1  ba × ; where a 
-1

 ba = b 
808 

(ii) G2  ba × ; where a 
-1

 ba = b 
1190

 

16. For subgroups of orders (3)(127) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
19 

      (ii) G2  ba × ; where a 
-1

 ba = b
107

  

17. For subgroups of orders (3)(307) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
17 

     (ii) G2  ba × ; where a 
-1

 ba = b 
289

. 

18. For subgroups of orders (3)(457) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
133 

      (ii) G2  ba × ; where a 
-1

 ba = b 
323

 

19. For subgroups of orders (3)(577) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
213 

      (ii) G2  ba × ; where a 
-1

 ba = b 
363

 

20. For subgroups of orders (3)(757) we have 

      (i) G1  ba × ; where a 
-1

 ba = b 
27 

      (ii) G2  ba × ; where a 
-1

 ba = b 
729

  

21. For subgroups of orders (3)(907) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
384 

      (ii) G2  ba × ; where a 
-1

 ba = b 
522 

22. For subgroups of orders (3)(1117) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
120 
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      (ii) G2  ba × ; where a 
-1

 ba = b 
996 

23. For subgroups of orders (3)(1237) we have 

      (i)  G1  g ba × ; where a 
-1

 ba = b 
300 

      (ii) G2  ba × ; where a 
-1

 ba = b 
936 

24. For subgroups of orders (3)(1597) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
222 

      (ii) G2  ba × ; where a 
-1

 ba = b 
1374 

25. For subgroups of orders (3)(1747) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
371 

 

26. For subgroups of orders (3)(1987) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
647 

      (ii) G2  ba × ; where a 
-1

 ba = b 
1339 

27. For subgroups of orders (3)(103) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
46 

      (ii) G2  ba × ; where a 
-1

 ba = b 
56

 

28. For subgroups of orders (3)(223) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
31 

      (ii) G2  ba × ; where a 
-1

 ba = b 
183

 

29. For subgroups of orders (3)(433) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
198 

      (ii) G2  ba × ; where a 
-1

 ba = b 
234 
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30. For subgroups of orders (3)(643) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
177 

      (ii) G2   ba × ; where a 
-1

 ba = b 
465

 

31. For subgroups of orders (3)(883) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
337 

      (ii) G2  ba × ; where a 
-1

 ba = b
545

 

32. For subgroups of orders (3)(1093) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
151 

      (ii) G2  ba × ; where a 
-1

 ba = b 
941

 

33. For subgroups of orders (3)(1123) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
33 

      (ii) G2  ba × ; where a 
-1

 ba = b 
1089

 

34. For subgroups of orders (3)(1303) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
95 

      (ii) G2  ba × ; where a 
-1

 ba = b 
1207

 

35. For subgroups of orders (3)(1453) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
693 

      (ii) G2  ba × ; where a 
-1

 ba = b 
759

 

36. For subgroups of orders (3)(14833) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
38 

      (ii) G2  ba × ; where a 
-1

 ba = b 
1444

 

37. For subgroups of orders (3)(1693) we have 
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      (i)  G1  ba × ; where a 
-1

 ba = b 
433 

      (ii) G2  ba × ; where a 
-1

 ba = b 
1259

 

38. For subgroups of orders (3)(1783) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
193 

      (ii) G2  ba × ; where a 
-1

 ba = b 
1589

 

39. For subgroups of orders (3)(1993) we have 

      (i)  G1  ba × ; where a 
-1

 ba = b 
312 

      (ii) G2  ba × ; where a 
-1

 ba = b 
1680 

We summarize the above findings in as follows: 

 

 

3.2 LEMMA 

If 100 < p < 2000 and p  1 (mod 3) then groups of order n = 3p have at most two  

non - Abelian isomorphic types. 

PROOF:  This follows from the examples generated above. For a group of order  

n = 3p, p  1 (mod 3) there are only two values of t such that t
3
  1 (mod p), t1 and t2, 

say.  Any other value for t ≠ t1 or t2 must be a must a power of one of the t1 or t2 . 

Hence such group has two non-abelian isomorphic types 

 

3.3     FOR SUBGROUPS OF ORDER 3p WHERE 2000 < p < 4000  

Further application of our scheme on groups of order n = 3p, for distinct primes, p are 

as follows: 

 For each prime p the following non-Abelian types, together with their defining 

relations are displayed (where a and b are two generators such that a
3 

= b
p
 = 1): 

1. For subgroups of order (3)(2011) we have  

      (i) G1  ba × ; where a 
-1

 ba = b 
205 
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    (ii) G2  ba × ; where a 
-1

 ba = b 
1805

 

2. For subgroups of order (3)(2131) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
468 

   (ii) G2  ba × ; where a 
-1

 ba = b 
1662

 

 3. For subgroups of order (3)(2251) we have  

     (a) G1  ba × ; where a 
-1

 ba = b 
708 

   (b) G2  ba × ; where a 
-1

 ba = b 
1542

 

4. For subgroups of order (3)(2311) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
882 

   (ii) G2  ba × ; where a 
-1

 ba = b 
1428

 

5. For subgroups of order (3)(2371) There are:  

     (i) G1  ba × ; where a 
-1

 ba = b 
464 

   (ii) G2  ba × ; where a 
-1

 ba = b 
1906

 

 6. For subgroups of order (3)(2671) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
544 

   (ii) G2  ba × ; where a 
-1

 ba = b 
2126

 

 

 7. For subgroups of order (3)(2971) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
54 

   (ii) G2  ba × ; where a 
-1

 ba = b 
2916

 

8. For subgroups of order (3)(3001) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
934 
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   (ii) G2  ba × ; where a 
-1

 ba = b 
2066

 

9. For subgroups of order (3)(3181) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
440 

   (ii) G2  ba × ; where a 
-1

 ba = b 
2740

 

10. For subgroups of order (3)(3331) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
1463 

   (ii) G2  ba × ; where a 
-1

 ba = b 
1867

 

11. For subgroups of order (3)(3511) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
59 

   (ii) G2  ba × ; where a 
-1

 ba = b 
3481

 

12. For subgroups of order (3)(3691) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
474 

   (ii) G2  ba × ; where a 
-1

 ba = b 
3216

 

13. For subgroups of order (3)(3931) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
617 

   (ii) G2  ba × ; where a 
-1

 ba = b 
3313

 

 

3.4 LEMMA 

For groups of order n = 3p, where 2000 < p < 4000, p  1 (mod 3) there can be a only  

two non-abelian isomorphic type. 

Proof: This is just what we proved in Lemma 3.2. 

 

3.5   GROUPS OF ORDER 5p WHERE p  1(mod 5) AND 100 < p < 2000. 

In this case the following situation occur for a
5
 = b

p
 = 1, where a and b are generators 
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of order 5 and p respectively. 

1.  For subgroups of order (5)( 131), we have  

i. G1  ba × , where a
-1

ba =b
53 

 

ii. G2  ba ×  where a 
-1

ba = b
58

 

iii. G3  ba ×  where a
-1

ba = b
61

 

iv. G4  ba ×  where a
-1

ba = b
89

 

2. For subgroup of order (5)(251) we have  

 i. G1  ba × , where a
-1

ba =b
20 

 
ii. G2  ba ×  where a

 -1
ba = b

113 

 
iii. G3  ba ×  where a

-1
ba= b

149 

 
iv. G4  ba ×  where a

-1
ba=b

129
 

3. For subgroups of order (5)(251) we have  

 i. G1  ba × , where a
-1

ba =b
86 

 
ii. G2  ba ×  where a

 -1
ba = b

90
 

 iii. G3  ba ×  where a
-1

ba= b
153 

 
iv. G4  ba ×  where a

-1
ba=b

232
 

4. For subgroups of order (5)(461) we have  

i. G1  ba × , where a
-1

ba =b
88 

ii. G2  ba ×  where a
 -1

ba = b
114 

iii. G3  ba ×  where a
-1

ba= b
351 

iv. G4  ba ×  where a
-1

ba=b
368
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5. For subgroups of order (5)(491) we have  

i. G1  ba × , where a
-1

ba =b
101 

ii. G2  ba ×  where a
 -1

ba = b
183

 

iii. G3  ba ×  where a
-1

ba= b
316

 

iv. G4  ba ×  where a
-1

ba=b
381

 

6. For subgroup of order (5)(641) we have  

i. G1  ba × , where a
-1

ba =b
357 

ii. G2  ba ×  where a
 -1

ba = b
47 

iii. G3  ba ×  where a
-1

 ba= b
531 

iv. G4  ba ×  where a
-1 

ba=b
562 

7. For subgroups of order (5)(881) we have  

i. G1  ba × , where a
-1

ba =b
268 

ii. G2  ba × , where a
 -1

ba = b
286

 

iii. G3  ba × , where a
-1

ba= b
463

 

iv. G4  ba × , where a
-1

ba=b
744 

 

8. For subgroup of order (5)(941) we have  

i. G1  ba × , where a
-1

ba =b
349 

ii. G2  ba × gp{a} x gp{b}, where a
 -1

ba = b
364

 

iii. G3  ba × , where a
-1

ba= b
412

 

iv. G4  ba × , where a
-1

ba=b
756

 

9.  For subgroups of order (5)(1061) we have 

i. G1  ba × , where a
-1

ba =b
220 
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ii. G2  ba × , where a
 -1

ba = b
381

 

iii. G3  ba × , where a
-1

ba= b
655

 

iv. G4  ba × , where a
-1 

ba=b
862

 

10. For subgroups of order (5)(1301) we have  

i.        G1  ba × , where a
-1

ba =b
163 

ii.       G2  ba × , where a
 -1

ba = b
549

 

iii.       G3  ba × , where a
-1

ba= b
870

 

iv.       G4  ba × , where a
-1

ba=b
1019

 

11. For subgroups of order (5)(1511) we have  

i.       G1  ba × ; where a
-1

ba =b
534 

ii.      G2  ba × ; where a
 -1

ba = b
631

 

iii.     G3  ba × ; where a
-1

ba= b
768

 

iv.    G4  ba × ; where a
-1

ba=b
1088

 

12. For subgroups of order (5)(1811) we have  

i.       G1  ba × , where a
-1

ba =b
433 

ii.      G2  ba × , where a
 -1

ba = b
956

 

iii.     G3  ba × , where a
-1

ba= b
1040

 

iv.     G4  ba × , where a
-1 

ba=b
1192

 

13. For subgroups of order (5)(1931) we have  

i.       G1  ba × , where a
-1

ba =b
1101 

ii.      G2  ba × , where a
 -1

ba = b
1410
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iii.     G3  ba × , where a
-1

ba= b
1467

 

 

3.6 LEMMA 

If 100 < p < 2000, p  1 (mod 5), there are at most four non-Abelian Isomorphic types 

of groups of order 5p.   

PROOF:  This follows from the examples generated above. A group of order n = 5p,  

p  1 (mod 5) has only four values of t such that t
5
  1 (mod p), t1, t2, t3 and t4, say.  

Any other value for t ≠ t1, t2, t3, or t4 must be a must a power of any one of them. 

Hence such group has at most four non-abelian isomorphic types 

 

3.7    FOR GROUPS OF ORDER n = 5p, FOR 2000 < p < 4000.  

 Here we also assume two element generators a and b such that  

         a
5
 = b

p
 =1 and p  1 (mod 5). The following non-Abelian types are obtained:  

1.   For subgroups of order (5)(2011) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
798 

  (ii) G2  ba × ; where a 
-1

 ba = b 
1328

 

     (iii) G3  ba × ; where a 
-1

 ba = b 
1948

  
 

   (iv) G4  ba × ; where a 
-1

 ba = b 
1958

 

2. For subgroups of order (5)(2131) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
832 

  (ii) G2  ba × ; where a 
-1

 ba = b 
1734

 

     (iii) G3  ba × ; where a 
-1

 ba = b 
1780

  
 

   (iv) G4  ba × ; where a 
-1

 ba = b 
2046

 

 3. For subgroups of order (5)(2251) we have  
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     (i) G1  ba × ; where a 
-1

 ba = b 
361 

  (ii) G2  ba × ; where a 
-1

 ba = b 
2014

 

     (iii) G3  ba × ; where a 
-1

 ba = b 
2232

 
 

4. For subgroups of order (5)(2341) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
735 

  (ii) G2  ba × ; where a 
-1

 ba = b 
809

 

     (iii) G3  ba × ; where a 
-1

 ba = b 
1342

  
 

5. For subgroups of order (5)(2521) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
757 

  (ii) G2  ba × ; where a 
-1

 ba = b 
782

 

     (iii) G3  ba × ; where a 
-1

 ba = b 
1442

  
 

   (iv) G4  ba × ; where a 
-1

 ba = b 
2060

 

6. For subgroups of order (5)(2731) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
742 

  (ii) G2  ba × ; where a 
-1

 ba = b 
1233

 

7. For subgroups of order (5)(2851) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
45 

  (ii) G2  ba × ; where a 
-1

 ba = b 
887

 

     (iii) G3  ba × ; where a 
-1

 ba = b 
2744

  

8. For subgroups of order (5)(3121) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
190 

  (ii) G2  ba × ; where a 
-1

 ba = b 
2545
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     (iii) G3  ba × ; where a 
-1

 ba = b 
3081

  
 

9. For subgroups of order (5)(3181) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
425

 
 

  (ii) G2  ba × ; where a 
-1

 ba = b 
1714

 

 10. For subgroups of order (5)(3301) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
454

 
 

  (ii) G2  ba × ; where a 
-1

 ba = b 
1454

 

    (iii) G3  ba × ; where a 
-1

 ba = b 
1476 

 (iv) G4  ba × ; where a 
-1

 ba = b 
3217

 

 11. For subgroups of order (5)(3391) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
926

 
 

  (ii) G2  ba × ; where a 
-1

 ba = b 
1805

 

    (iii) G3  ba × ; where a 
-1

 ba = b 
2049 

 (iv) G4  ba × ; where a 
-1

 ba = b 
2944 

12. For subgroups of order (5)(3931) we have  

     (i) G1  ba × ; where a 
-1

 ba = b 
1547.

  

 

3.8 LEMMA 

For groups of order n = 5p, where 2000 < p < 4000, p  1 (mod 5) there can be only 

four non-abelian isomorphic type. 

PROOF:  From our examples above, this is just the proof of Lemma 3.6 above. 
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3.9 FOR GROUPS OF ORDER n = 7p SUCH THAT p  1 (mod 7) AND 

             20 < p < 2000. 

 

For any group G of order 203 = 7 x 29 we will have 

 G  ba × ; 

with b
29

 = a
7
 = e and for different values of in the defining relation ba = ab

t
 we obtain 

the following:  

(i) ba = ab
7
,  

(ii) ba = ab
16

 ,  

(iii) ba = ab
20

,  

(iv) ba = ab
23

,  

(v) ba = ab
24

 and  

(vi) ab = ab
25

 

 

For clarity, we show the closure properties of (i) and (ii) as follows:  

 with ba = ab
7
, 

 (ba)
2
 = ab

7
ab

7
 = ab

6
ab

14
 = ab

5
ab

21
 = ab

4
ab

28
 = ab

3
ab

6
 = ab

2
ab

13
 = abab

20
 = a

2
b

27
 

 (ba)
3
 = a

2
b

27
ab

7
 = … = a

3
b

22
 

 (ba)
4
 = a

3
b

22
ab

7
 = … = a

4
b

16
 

 (ba)
5
 = a

4
b

16
ab

7
 = a

4
b

15
ab

14
 = … = a

5
b

3
 

 (ba)
6
 = a

5
b

3
ab

7
 = … = a

6
b

28
 

 (ba)
7
 = baa

6
b

28
 = e 

 

With ba = ab
16

 we have 

 (ba)
2
 = ab

16
ab

16
 = … = a

2
b

11
 

 (ba)
3
 = a

2
b

11
ab

16
 = … = a

3
b

18
 

 (ba)
4
 = a

3
b

18
ab

16 
= … = a

4
b

14
 

 (ba)
5
 = a

4
b

14
ab

16 
= … = a

5
b

8
 



 

 

63 

 (ba)
6
 = a

5
b

8
ab

16 
= … = a

6
b

28
 

 (ba)
7
 = baa

6
b

28 
= e. 

 

With ba = ab
20

 

 (ba)
2
 = ab

20
ab

20
 = ab

19
ab

11
 = … = a

2
b

14
 

 (ba)
3
 = a

2
b

14
ab

20
 = … = a

3
b

10
 

 (ba)
4
 = a

3
b

10
ab

20
 = a

3
b

9
ab

11
 = … = a

4
b

17
 

 (ba)
5
 = a

4
b

17
ab

20
 = … = a

5
b

12
 

 (ba)
6
 = a

5
b

12
ab

20
 = a

5
b

12
ab

20
 = a

5
b

11
ab

11
 … = a

6
b

28
 

 (ba)
7
 = baa

6
b

28
 = e. 

 

With ba = ab
23

, we have 

 (ba)
2
 = ab

23
ab

23
 = ab

22
ab

17
 = … = a

2
b 

 (ba)
3
 = a

2
bab

23
 = a

3
b

17
 

 (ba)
4
 = a

3
b

17
ab

23
 = a

3
b

16
ab

17
 = a

3
b

15
ab

11
 = … = a

4
b

8
 

 (ba)
5
 = a

4
b

8
ab

23
 = a

4
b

7
ab

17
 = … = a

5
b

4
 

 (ba)
6
 = a

5
b

4
ab

23
 = a

5
b

3
ab

17
 = a

5
b

2
ab

11
 = … = a

6
b

28
 

  (ba)
7
 = baa

6
b

28
 = e.  

Similarly for a group of order 21 that 2
3
  1 (mod 7). Here again r is within the range 

1 < t < 7. 

 

With ba = ab
24

, similar approach shows that 

 ba = ab
24

 is of order 7.  

Here we make use of the fact that each subgroup is a two element generator, a and b 

say, with a 
7 

= b
p
 = 1. 

1. For p = 29 and for a subgroup of order (7) (29) we have the following: 
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G1  ba × ;  with a
-1

 ba = b
t 

Where t = 7, 16, 23, 24, 25 

It is easily verified that each of the elements ba=ab
7
, ba = ab

16
, ba= ab

20
, 

ba=ab
23

, ba=ab
24

, and ba=ab
25

 have order 7 in their respective non-Abelian 

groups. That is to say that the elements ,....abba,abba 21 tt == , form 

different non-Abelian groups of order sp have order s respectively. 

2. For p = 43 and for a subgroup of (7) (43) we have the following 

G1  ba × ;  with a
-1

 ba = b
t 

Where t = 4, 11, 21, 35, 41 

3. For p = 71 and for a subgroup of order (7) (71) we have 

G1  ba × ;  with a
-1

 ba = b
t
 

Where t =30, 32, 37, 45, 48 

4. For p = 113 and for subgroup of order (7) (113) have: 

G1  ba × ;  with a
-1

 ba = b
t
 

Where t =16, 28, 30, 49, 106, 109 

6. For p = 127 and for subgroup of order (7) (127) we have. 

G1  ba × ;  with a
-1

 ba = b
2 

or b
4
 or b

8
 or b

64 

Any of the options generate the same group since 4 = 2
2
 and 8 = 2

3
,  

32 = 2
5
, 64 = 2

6 

6. For p = 197 and for subgroup of order (7) (197) we have; 

G1  ba × ;  with a
-1

 ba = b
t 

where t = 36, 104, 114, 164, 178 

7. For p = 211 and for subgroups of order (7) (211) and for a
7
 = b

211
 = 1 we 

have; 
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G1  ba × ; with a
-1

 ba = b
t
 

where t = 58, 123, 144, 148, 171 

8. For p = 239 and for subgroups of order (7) (239) we have 

G1  ba × ;  with a
-1

 ba = b
t 

where t = 10, 24, 44, 98
 

9. For p = 281 and for subgroup of order (7) (281) and for a
7 

= b
281 

=1 

       G1  ba × ;  with a
-1

 ba = b
t 

Where t = 59, 79, 109, 165, 181
 

10. For p = 449 and for a subgroup of order (7) (449) we have; 

G1  ba × ;  with a
-1

 ba = b
t 

Where t = 18, 176, 285, 444
 

It can be observed that t1 = 18 and t4 =324 = 18
2
.   

11. For p = 463 and for a subgroup of order (7) (463) we have 

G1  ba × ;  with a
-1

 ba = b
t 

Where t = 34, 118, 230, 286, 308, 312 

12. For p = 547 and for a subgroup of order (7) (547) we have; 

G1  ba × ;  with a
-1

 ba = b
t 

Where t = 9, 182, 304, 520, 533, 544
 

13. For p = 617 and for a subgroup of order (7) (617) we have;
 

G1  ba × ;  with a
-1

 ba = b
t 

where t = 142, 408, 420
 

14. For p = 701 for subgroups of order (7) (701), we have; 

G1  ba × ;  with a
-1

 ba = b
t 

where t = 19, 167, 636
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15. For p = 743 for subgroup of order (7) (743), we have; 

G1  ba × ;  with a
-1

 ba = b
t 

where t = 111, 328, 450, 590
 

16. For p = 757 and for subgroup of order (7) (757) we have; 

G1  ba × ;  with a
-1

 ba = b
t 

where t = 59, 62, 77, 232, 559
 

17. For p = 953 and for a subgroup of order (7) (953), we have; 

G1  ba × ;  with a
-1

 ba = b
t 

where t = 508, 528, 822, 559
 

18. For p = 967 and for a subgroup order (7) (967), we have; 

G1  ba × ;  with a
-1

 ba = b
t 

where t = 97, 226, 648, 772, 792 

19. For p = 1093, and for a subgroup of order (7) (1093), we have; 

G1  ba × ;  with a
-1

 ba = b
t 

where t = 3, 9, 27, 81, 1036
 

Since 81 = 3
4
, 27 = 3

3
 and 9 = 3

2
, we see that t1, t2, t3 and t4 give rise to the 

same non-Abelian isomorphic type.  Hence we have only two non- Abelian 

isomorphic types. 

20. For p = 1163, and for a subgroup of order (7) (1163), we have; 

G1  ba × ;  with a
-1

 ba = b
t 

Where t = 44, 383
 

21. For p = 1933 and for a subgroup of order (7) (1933), we have; 

G1  ba × ;  with a
-1

 ba = b
t 

Where t = 1000, 1069, 1285 
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3.10  LEMMA 

Groups of order n = 7p where p  1(mod 7) have at most six non-Abelian            

isomorphic types. 

PROOF: This is similar to the proof for groups of order 3p and 5p except that t has at 

most six distinct values t1,t2, t3, t4, t5 and t6.  Any other value will be a prime power of 

one of the ti’s for i = 1, 2, 3, 4, 5, 6. 

 

3.11 FOR SUBGROUPS OF ORDER 11p 

1. For those primes p such that p   1 (mod. 11) we give few results of such 

subgroups of order 11p.  We also assume two element generators, a b say, 

such that a
11

 = b
p 

 = 1 

  
For p = 23 and for subgroups of order (11) (23) we have;

 

G1   ba × ; with a
-1

 ba = b
t 

where t = 2, 3, 12, 13, 18 

2. For p = 67 and for subgroups of order (11) (67) we have the following non-

Abehian types: 

G   g ba × ; with a
-1

 ba = b
t 

 where t = 9, 14, 15, 22, 24, 25, 40, 59, 62, 64 

3.
  

For p = 331 and for a subgroups of order (11) (331) we have;
 

G  ba × ; with a
-1

 ba = b
t 

 where t = 4, 80, 85, 111, 120, 167, 180, 270, 274, 293 

4. For p = 353 and for a subgroups of order (11) (353) we have; 

G   ba × ; with a
-1

 ba = b
t 

 where t = 22, 58, 131, 140, 185, 187, 217, 231, 256, 337 
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5. For p = 419 and for a subgroups of order (11) (419) we have;
 

G  ba × ; with a
-1

 ba = b
t 

 where t = 13, 59, 69, 102, 129, 152, 169, 300, 334, 348 

6. For p = 463 and for a subgroups of order (11) (463) we have;
 

G  ba × ; with a
-1

 ba = b
t 

 where t = 15, 55, 134, 158, 247, 337, 356, 362, 425 

 

3.12  LEMMA 

Groups of order 11p where p  1 (mod 11) have at most ten non-Abelian isomorphic 

types.  

PROOF: This is similar to the proof for groups of order 3p and 5p except that t has at 

most six distinct values t1,t2, t3, t4, t5 t6, t7, t8, t9, and t10  Any other value for t will be a 

prime power of one of the ti’s for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. 

 

3.13 FOR SUBGROUPS OF ORDER 13p, WHERE p  1 (mod 13) 

We also assume that such subgroups are generated by two elements a and b such that 

a
13

 = b
p 
= 1 

1. For p = 53 and for subgroups of order (13) (53) we have 

G  ba × ; with a
-1

 ba = b
t 

 where t = 10, 13, 15, 16, 24, 28, 36, 42, 44, 46, 47, 49 

2. For subgroups of order (13) (79) we have 

G  ba ×  with a
-1

 ba = b
t 

 where t = 8, 10, 18, 21, 22, 38, 46, 52, 62, 64, 65, 67 

3. For subgroups of order (13)(131) we have 

G  ba × ; with a
-1

 ba = b
t 
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 where t = 39, 45, 52, 60, 62, 63, 80, 84, 99, 107, 112, 113 

4. For subgroups of order (13) (443) we have 

G  g ba × ; with a
-1

 ba = b
t 

where t = 35, 38, 56, 135, 184, 188, 238, 339, 347, 356, 378, 383 

 

3.14  LEMMA 

Groups of order n = 13p for p  1(mod 13) have at most twelve non-Abelian 

isomorphic types.  

PROOF: This is similar to the proof for groups of order 3p and 5p except that t has at 

most six distinct values t1,t2, t3, t4, t5 t6, t7, t8, t9, t10, t11, and t12. Any other value for t 

will be a prime power of one of the ti’s for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 

 

3.15 GROUPS OF ORDER n = sp WITH NO NON-ABELIAN ISOMORPHIC TYPES. 

We, however, make a comment on why the groups of order n = sp such that p is not 

congruent to 1 modulo s and reasons why they do not have non-abelian isomorphic 

types.  

To do this a group of order 15 will be considered first. 

Let .5315 xG  3x5. G has only one Sylow 5 - subgroup H, say, which is normal in G.  

Let H and K be cyclic subgroups of order 5 and 3 respectively.  We have that  

H K = {e}.  Again, any subgroup containing H and K has a multiple of 15.  Hence 

|H x K|=15, i.e.  H x K = G. 

Therefore, G = H x K implies that G = C5 x C3  C15 

Hence G is cyclic and therefore Abelian.  Supposing a and b are generators of G. 

Then ba = ab
t
 where t ≠1 would generate a non-Abelian isomorphic type. This is not 

possible as none of the values 2, 3 and 4 ensured that ab
t
 has order 5 or 3.  

Note that 52 (mod. 3). 
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We similarly looked at groups of order 35 = 5 x 7. Again, it is noticed that 7 is 

congruent to 2 modulo 5 and hence such does not have a non-abelian isomorphic type. 

A group of order 65 = 5 x 13 has the same behavior as 13 is congruent to 3 modulo 5.   

 

With our scheme we outline the following examples: 

 

For groups of order 5p where p ≡ k (mod 5), k > 1 especially where k = 4.  

We have the following few values for t: 

For subgroups of order 5p we have for p  4 (mod 5) the following:  

1. For subgroup of order (5)(1999) with a
5
 = b

1999 
= 1, t = 1813;  

2. For sub group of order (5)(3079) with a
5 

=b
3559

 =1, we have t = 2887; 

3. For sub group of order (5)(3559) with a
5 

= b
3559

 = 1, we have t = 1893 

Hence no value of t will ensure closure for ab = b
t
a 

We will also be considering subgroups that are generated by two elements a and b 

such that a
7
 = b

p
 = 1 but p is not congruent to 1 modulo 7. 

1. For p  = 373 and for a subgroup of order (7) (373), we have t = 259, 281; 

2. For p =  401 and for a subgroup of order (7) (401), we have t = 265, 357; 

3. For p = 457 and for a subgroup of order (7) (457), we have t = 237, 305, 442; 

4. For p = 541 and for a subgroup of order (7) (541), we have t = 463; 

5.  For p =  653 and for a subgroup of order (7) (653), we have t = 614; 

6. For p =  571 and for a subgroup of order (7) (571), we have t = 741; 

7. For p = 1283 and for a subgroup of order (7) (1283), we have t = 714, 1097; 

8. For p = 1297and for a subgroup of order (7) (1297), we have t = 321; 

9. For p = 1493 and for a subgroup of order (7) (1493), we have t = 835, 1205; 

10. For p = 1619 and for a subgroup of order (7) (1619), we have 

     t = 534, 837,  1359.  
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11. For p =1787 and for a subgroup of order (7) (1787), we have t = 1100, 1393; 

12. For p =1871 and for a subgroup of order (7) (1871), we have t = 478, 667,  

             806, 1747 

13. For p = 1995 and for a subgroup of order (7) (1995), we have t = 1289. 

No non-Abelian isomorphic type was obtained due to inability of closure property to 

be satisfied. 

 

For Primes p such that p  3 (mod 7) the following values of t were obtained: 

1. For p = 521 and for subgroup of order (7) (521) and for a
7 

 = b
521

 = 1, we have 

t = 345; 

2. For p = 647 and for subgroups of order (7) (647) and for a
7
 = b

647
 = 1, we have 

t = 259; 

3. For p = 829 and for subgroups of order (7) (879) and for a
7
 = b

829
 = 1, we have 

t = 337, 826; 

4. For p = 997 and for subgroups of order (7) (997) and for a
7
 = b

997
 = 1, we have 

t = 730; 

5.  For p = 1109 and for subgroups of order (7) (1109) and for a
7
 = b

1109
 = 1, we 

have t = 946, 989; 

6. For p = 1277 and for subgroups of order (7) (1277) and for a
7
 = b

1277
 = 1, we 

have t = 838; 

7. For p = 1319 and for subgroups of order (7) (1319) and for a
7
 = b

1319
 = 1, we 

have t = 727; 

8. For p = 1571 and for subgroups of order (7) (1571) and for a
7
 = b

1571
= 1, we 

have t = 397, 985; 

9. For p = 1613 and for subgroups of order (7) (1613) and for a
7
 = b

1613
= 1, we 

have t = 1535; 
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10. For p = 1669 and for subgroups of order (7) (1669) and for a
7
 = b

1669
= 1, we 

have t = 1031, 1100; 

11. For p = 1697 and for subgroups of order (7) (1697) and for a
7
 = b

1697
= 1, we 

have t = 1619; 

12. For p = 1823 and for subgroups of order (7) (1823) and for a
7
 = b

1823
= 1, we 

have t = 695; 

13. For p = 1879 and for subgroups of order (7) (1879) and for a
7
 = b

1879
= 1, we 

have t = 391, 227; 

14. For p = 1849 and for subgroups of order (7) (1849) = 1, we have t = 1340, 

1532, 1788. 

 

Furthermore, for primes, p say, such that p  4 (mod 7) the following values for are 

obtained: 

1. For p = 263 and for subgroups of order (7) (263) and for a
7
 = b

263
 = 1, we have 

t = 225; 

2. For p = 389 and for subgroups of order (7) (389) and for a
7
 = b

389
 = 1, we have 

t = 233; 

3. For p = 487 and for subgroups of order (7) (487) and for a
7
 = b

487
 = 1, we have 

t = 485; 

4. For p = 557 and for subgroups of order (7) (557) and for a
7
 = b

557
 = 1, we have 

t = 433; 

5. For p = 907 and for subgroups of order (7) (907) and for a
7
 = b

907
 = 1, we have 

t = 687, 786; 

6. For p = 1481 and for subgroups of order (7) (1481) and for a
7
 = b

1481
 = 1, we 

have t = 1361; 

7. For p = 1831 and for subgroups of order (7) (1831) and for a
7
 = b

1831
 = 1, we 
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have t = 1578; 

8. For p = 1901 and for subgroups of order (7) (1901) and for a
7
 = b

1901
 = 1, we 

have t = 618; 

9. For p = 1999 and for subgroups of order (7) (1999) and for a
7
 = b

1999
 = 1, we 

have t = 1033, 1156, 1409. 

 

For Primes p such that p  5 (mod 7), the following values of t which equally failed 

the closure property were obtained: 

1. For p = 313 and for subgroups of order (7) (313) and for a
7
 = b

313
 = 1, we have 

t = 197; 

2. For p = 439 and for subgroups of order (7) (439) and for a
7
 = b

439
 = 1, we have 

t = 315; 

3. For p = 523 and for subgroups of order (7) (523) and for a
7
 = b

523
 = 1, we have 

t = 402, 479; 

4. For p = 593 and for subgroups of order (7) (593) and for a
7
 = b

593
 = 1, we have 

t = 521; 

5. For p = 677 and for subgroups of order (7) (677) and for a
7
 = b

677
 = 1, we have 

t = 395, 610; 

6. For p = 1789 and for subgroups of order (7) (1489) and for a
7
 = b

1489
 = 1, we 

have t = 341; 

7.  For p = 1559 and for subgroups of order (7) (1559) and for a
7
 = b

1559
 = 1, we 

have t = 715; 

8.       For p = 1951 and for subgroups of order (7) (1951) and for  

       a
7
 = b

1783
 = 1, we have t = 433; 

  

For those Primes p in the Congruence Class of 6 modulo 7 the following values for t 
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were obtained for a
7
 = b

p
 =1: 

1. For p = 223 and for subgroups of order (7) (223) we have t = 197; 

2. For p = 461 and for subgroups of order (7) (461) we have t = 355;
 

3. For p = 587 and for subgroups of order (7) (587) we have t = 443; 

4.  For p = 601 and for subgroups of order (7) (601) we have t = 513; 

5. For p = 769 and for subgroups of order (7) (769) we have t = 683; 

6. For p = 1693 and for subgroups of order (7) (1693) we have t = 683, 1292; 

7. For p = 1777 and for subgroups of order (7) (1777) we have t = 213; 

8. For p = 1847 and for subgroups of order (7) (1847) we have t = 608, 926; 

9. For p = 1889 and for subgroups of order (7) (1889) we have t = 386; 

10. For p = 1973 and for subgroups of order (7) (1973) we have t = 1972; 

From the examples outlined above, we state the following: 

 

3.16   LEMMA 

Any group of order n = sp where p is not congruent to 1 modulo s does not have a 

non-Abelian isomorphic type since none of the values for t can satisfy closure 

property for ba = ab
t
 as t

s
 is not congruent to 1 modulo p. Hence there cannot be a 

non-Abelian isomorphic type. 

 


In considering groups of order n = s(pq), 

groups of order 30, 42, and 70 were first treated. For consistency, x, y and z were used 

as generators and z
-1

xyz = (xy)
t
 where different values of t ≠ 1 will give different non-

Abelian isomorphic types that can be obtained. 

 

For The Non-Abelian Types of Groups of Order 30, it can be seen from that  

30 = 5 x 3 x 2. Since every finite Abelian group is a direct sum of primary cyclic 

groups there exists only one type of Abelian group of order 30 and this type is 
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necessarily cyclic by Theorem (1.4.11).  For the case where G is non-Abelian and of 

order 30, by Theorem (1.4.10), G has 1 or 6 subgroups of order 5 and 1 or 10 

subgroups or order 3.  It is obvious that a group of order 30 cannot have 6 subgroups 

of order 5 and 10 subgroups of order 3 at the same time. 

Hence any group of order 30 must have either its Sylow 5 - subgroup or its Sylow 3 -

subgroup normal in G. 

 

Hence if 1x:xH 5 ==  and   

1y:yH 3 == . 

Either H or K is normal in G. Hence  

 HK = KH 

is a subgroup of G. 

By factor theorem, 
.15HK
 Since any group of order 15 is Abelian and by (2.2), it 

follows than that  yxxy  . 

Hence, we look at the situation where   

( ) 1z,1xy:z,xyG 215 ===  

Since the subgroup xyHK=  has index 2 in G, it must therefore be normal in G. 

Hence z Gyx , yz = ( Gyx ,y)
t
,  

where t
2
 ≡ 1 (mod 15)  

and t = 1, 4, 11,and 14. 

Since t = 1 implies that G is Abelian, we start from t = 4. 

Therefore the following isomorphic type results 

(i) G1 = ‹xy,z›, (xy)
15

 = 1, z
2
 = 1, zxyz = (xy)

4
 = x

-1
y 

   = ‹x,y,z›,x5
 = y

3
 = z

2
 = 1, zxz = x

-1
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zyyzyxxy  ,  

 = ‹ x,z› × ‹ y › 

 = D5xC3 

Setting t = 11 the following relations are obtained: 

(ii)  G2 = ‹xy,z›, (xy)
15

 = 1, z
2
 = 1, zxyz = (xy)

11
 = xy

-1
  

     = ‹x,y,z›, x5
 = 1, y

3
 = 1, z

2
 = 1, xy = yx, zyz = y

-1
  

  = ‹x,yz›, x5
 = 1, y3 = 1, z

2
 = 1, xy = yx, zyz = y

-1
 

   z,yx ×= { } { }z,ygpxgp ×=    

    = C5xD6 = C5xS3. 

Finally for t = 14, we again have the relations: 

(iii) ( ) ==== zxyz,1z,1xy ,z,xyG 215

3  (xy)
-1 

 

  = ‹x,y,z›, x5
 = 1, y

3
 = 1, z

2
 = 1, zxz = x

-1
, xy = yx, zyz = y

-1
  

It is observed from the first representation that G3 is the dihedral group D15. 

The defining relations show that the Sylow 3 - subgroups and Sylow 5 - subgroups are 

always normal in any group of order 30. 

 

For groups of order 42 and from the factorization 

42 = 7 x 3 x 2, it can be seen that the Sylow 7 - subgroup is normal in G by Theorem 

(1.4.9). 

Here, 1x:xH 7 ==  

1y:yK 3 ==   

and 
21  HKandKHHK

. 

But  xyHK=  has index 2 in G, it must be normal in G. For more than one 

subgroups H we have for 
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  z Gyx ,yz = ( Gyx ,y)
t
 

where t
2
 ≡1 (mod 21) 

Hence t = 1, 8, 13 and 20. 

t = 1is trivial and we look at the rest. 

For t = 8, we have the following isomorphic type 

 

(i) ( ) 1221

1 xyzxyz,1z,1xy ,z,xyG ====  

 1237 yzyzyyx, xy,zx  xz,1z ,1y,1 x,z,y,x =======  

 yz,x ×=  

 = D6 x C7 

For t = 13 we obtain the following:  

(ii)  ( ) yxyxxyzxyz,1zyx ,z,y,xG 1613237

2 =======  

           = ‹x,y,z›, x7
 = y

3
 = 1 = z

2
 , zyz = y, xy = yx, zx = x

-1
             

           = D7 x C3.  

Finally, for t = 20 we obtain the following: 

(iii) ( ) ======= 2620237

3 yxxyzxyz,1z,1y,1x ,z,xyG x
-1

y
-1

 

            = ‹x,y,z›, x7
 = 1, y

3
 = 1, z

2
 = 1, zxz = x

-1
 , zyz = y

-1
              

From the representation of above, G3 is the dihedral D21 

 

Next groups of order 70 were considered as follows. 

Since 70 = 7 x 5 x 2, it should be seen that there exists only one class of Abelian group 

or order 70 which is necessarily cyclic. 

By a similar approach, we see that any group of order 70 must have either its Sylow 7 

- subgroup or its Sylow 5-subgroup normal in G. 

Hence,  
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1x:xH 7 ==  and  

1y:yK 5 ==  

For, ( )t
xyzxyz= and t

2
 ≡1 (mod35) we obtain t = 1, 6, 29, 34. 

For t = 6 we have: 

(i) ( ) ====== zxz,yzzy,yxxy,1z,1yx ,z,y,xG 235

1 x
-1 

                   =‹ x,z › × ‹ y ›,      yzzyxzxzzyxyxgpzxgp   ,,1,1,, 1257

 

      = D7xC5 

If t = 29, we have 

(ii) ( ) 1221

2 yzyz,xzzx,yxxy,1z,1yx ,z,xyG ======  

 z,yx ×=   

 = C7xD5 = C7xS3. 

If t = 34, we have:  

(iii) ( ) 11235

3 yzyz,xzxz,1z,1yx ,z,y,xG =====  

 G3 is here dihedral group of order 70, i.e. D35. 

 

3.18 SUMMARY OF DEFINING RELATIONS 

For groups of order 30, we have 

(i) G1 = ‹ a ›, a30
 = 1 

(ii) G2 = ‹ a,b ›, a15 = 1, b2 = 1, bab = a4  

             =  ‹x,y,z›, x5
 = 1, y3 = 1, z

2
 = 1, xy = yx, zx = xz, zyz = y

-1
 

 yz,x ×=  

(iii)    G3 = ‹ a,b ›, a15 = 1, b2 = 1, bab = a11
  

              = ‹ x,y,z›, x5
 = 1, y

3
 = 1, z

2
 = 1, xy = yx, zx = xz, zyz = y

-1
 

   = ‹x › × ‹ y,z ›. 
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(iv)    G1 = ‹a,b›, a15
 = 1, b

2
 = 1, bab = a

-1
 

 

For groups of order 42, we have 

(i)  G1 = ‹a ›, a42 = 1.     

(ii) G2 = ‹x ›  ×   ‹ y,z ›, 

                 ,,1,1,1,, 237

2 zxxzzyxzyxgpxgpG   
1,  yzyzyxxy  

(iii) G3 = ‹x,y,z›, x7
 = 1, y

3
 = 1, z

2
 = 1, zxz = x

-1
, zy = yz . 

(iv) G4 = ‹x,y,z›, x7
 = 1, y

3
 = 1, z

2
 = 1, zxz = x

-1
 , zyz= y

-1
.  

 

 

For groups of order 70, we have 

(i) G1 = ‹xy,z›, (xy)
35

 = 1, z
2
 = 1.  

(ii) yxxy ,yzzy,xzxz,1z,1y,1x,yz,xG 1257

2 ======×=  

(iii)      yxxy ,yzyz,xzxz,1z,1y,1x,z,yxG 1257

3 ======×=  

(iv) G4 = ‹xy,z›, (xy)
15

 = 1, z
2
 = 1, zxz = x

-1
, zyz = y

-1
 . 

  

The above results can be summarized as a proposition: 

 

3.19 PROPOSITION  

There are three non-Abelian isomorphic types of groups of order n = spq, s<p<q. 

(n=30, 40 and 70) 

G1 =  ‹a›; aspq = 1 

the cyclic group which is Abelian 

it1_1_spq

2 xxzz,yyzz,yxxy;1zyx;z,y,xG =======     

where t1=p+1.  This is the case for groups of order 30 and 70. 

G3= ‹ a,b ›; apq
 = b

s
 = 1, b

-1
ab = pqtwherea 2

t2 = -1  

This is generally obtained for groups of order 30, 42 and 70 respectively. 
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G4 = ‹ x,y,z ›; xq = y p = zs = 1; xz = zx, xy = yx, 

   

This was again seen to be true for groups of order 30 and 70. 

 With our scheme, we list the possible values of t which gave rise to non-Abelian 

isomorphic types of groups of order n =2pq: 

For n = 154 = 2 x 7 x 11 = 2 x 77; t = 34, 43 and 76. 

For n = 182 = 2 x 7 x13 = 2 x 91; t = 27, 64 and 90. 

For n = 238 = 2 x 7 x 17 = 2 x 119; t = 50, 69, and 118. 

For n = 442 = 2 x 13 x 17 = 2 x 221; t = 103, 118, and 220. 

For n = 494 = 2 x 13 x 19 = 2x247; t = 77, 170, and 246. 

For n = 266 = 2x 7 x 19 = 2 x 133; t = 20, 113, 132. 

For n = 286 = 2 x 11 x 13 = 2 x 143; t = 12, 131, and 142. 

For n = 374 = 2 x 11 x 17 = 2 x 187; t = 67, 120, and 1186. 

For n = 418 = 2 x 11 x 19 = 2 x 209; t = 56, 153, and 208. 

For n = 66 = 2 x 3 x11 = 2 x 33; t = 10, 23, and 50. 

For n = 102 = 2 x 3 x 17 = 2 x 51; t = 16, 35, and 50. 

For n = 114 = 2 x 3 x 19 = 2 x 57; t = 20, 37, and 56. 

For n = 110 = 2 x 5 x 11 = 2 x 55; t = 21, 34, and 54. 

For r =130 = 2 x 5 x 13 = 2 x 65; t = 14, 51, and 64. 

For n = 170 = 2 x 5 x 17 = 2 x 85; t = 16, 69, and 84. 

For n = 190 = 2 x 5 x 19 = 2 x 95; t = 39, 56, and 94. 

For n = 230 = 2 x 5 x 23 = 2 x 115; t = 24, 91, and 114. 

 

3.20 Lemma 

Groups of order n = 2pq has at most three non-Abelian isomorphic types. 

  . 1 1    where , 3 
1 3       

 q p t y yz z 
t 
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‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


×

 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x




 

‹ x ›×‹› x 

 x
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‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


×

 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


×

 

‹ x › ×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x


 

‹ x ›×‹› x 

 x
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PROOF:  This is similar to the proof of Lemma 3.21 except that t = ti, 1 ≤ i ≤ 8. 
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CHAPTER FOUR 

RESULTS 

 
Here we put up our examples and findings from the previous chapter. 

 

 4.1 RESULT 1. Groups of order 2p have only one non-Abelian Isomorphic type. 

 

PROOF:  

Let G = ‹ a › × ‹ b › such that a
2
 = b

p
 = 1. Then the non-Abelian isomorphic type must 

have the relation  

 ab = b
t
a, 

where 1 < t < p. 

We need to show that only one value of t satisfies the above defining relationship.  

First, we notice that if t = 2 then 

 2
2
  1 (mod 3) and we see that 2

2
 – 1 = 3. 

This is true for p = 5, 7, 11, 13,..., 

That is if t = 4, then 

 4
2
 = 16  1 (mod 5).  

Also for t = 6, 10, 12,…., for p = 7, 11, 13, ….. 

Hence for any prime p > 2, we show that 

 (p – 1)
2
  1 (mod p) 

 (p – 1)
2
 – 1 = kp for some integer k. 

 p
2
 – 2p + 1 – 1 = p

2
 – 2p = p (p – 2) = kp 

Where k = p – 2 which is an integer. 

Hence for any group of order 2p, there is only one non-Abelian isomorphic type with 

the defining relation  

                    ab = b
t
a 
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and t will take value p – 1 as the only possibility. 

 

4.2 RESULT II  

Groups of order 3p have at most two non-abelian isomorphic types. 

 

PROOF:  

Let G = ‹ a › ×  ‹ b › such that a
3
 = b

p
 = 1. The non-Abelian isomorphic types must 

have the relations. 

(i)  1tbab=  

(ii) 2t
bab=  

where t1 and t2 are not powers of each other. 

Our problem here is to determine that there are two distinct values of t in the interval 

 1 < t < p, 

which satisfy the defining relationship ab = b
t
a. 

Here, we have  

 t
3
  1 (mod p) 

 t
3
 – 1 = kp for some integer k, and t

3
 – kp -1 = 0 is a polynomial of degree 3 

and would have at most three distinct roots. 

By the examples of the non-Abelian isomorphic types of groups of order n = 3p, t will 

take values from 2, 3,…, p – 1. 

From our examples above and Lemma 3.3 and 3.4, we see that only two values of t 

satisfied our requirement. We denote these values by t1 and t2. 

 

4.3   RESULT III 

Groups of order 5p have at most four non-abelian isomorphic types. 

PROOF:  

For G = ‹ a › × ‹ b ›, with a
5
 = b

p
 = e, 
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the non-Abelian isomorphic types are of the form 

 it
abba=  

 where i = 1, 2, 3, 4. 

As we have shown in the proof of non-Abelian isomorphic types of groups of order 

3p and from examples 3.5 and 3.7, ti 
‘
s are within the interval 1 < t < p hence the 

theorem. 

 

4.4    MAIN RESULT 

There are more than one non-Abelian isomorphic types of groups of order  

n = sp, where (s,p) = 1. 

 

4.5 MOTIVATION 

Dihedral group is a family of symmetry groups which are not commutative. When we 

consider a triangular plate we can have six rotational symmetries (with r and s as 

rotations) which are  

 e, r, r
2
, s, rs, r

2
s 

The above six elements form a group denoted by D3 . As an illustration 

 sr
2
 = s(rr) = (sr) r = (r

2
s) r = r

2
(sr) 

 = r
2
(r

2
s) = r

4
s = r

3
(rs) = e(rs)= rs. 

Notice that associative law was repeatedly used. The dihedral group Dn is the 

rotational symmetry group of the plate with n equal sides. Its elements can be 

described in the same manner as that used for D3. If r is a rotation of the plate through 

n

2
 about the axis of symmetry perpendicular to the plate, and s a rotation through  

about an axis of symmetry which lies in the plane of the plate, we have the following 

elements of Dn 

 e, r, r
2
, …, r

n-1
, s, rs, r

2
s, … , r

n-1
s. 
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Clearly, 

r
n
 = e, s

2
 = e 

and geometrically 

sr = r
n-1

s and since r
n-1

 = r
-1

, it is usual to write sr = r
-1

s (Armstrong M.A.). 

This is obtained in the situation where the order of a group n is 2p where p is a prime. 

This also matches the situation where t is determined for two element generators, a 

and b with a
-1

ba = b
t
 and t

2
 ≡ 1 (mod p), where p is the order of b and a

2
 = 1. 

Here we cite simple examples of groups of order 6 = 3x2, 14 = 7x2, and so on. In the 

situation where a group of order 15 = 3x5 is considered, there was value of t 

satisfying  

 a
-1

ba = b
t
 with t

3
 ≡ 1 (mod 5). 

For the group of order 21 = 3x7 it is easy to see that 

 a
-1

ba = b
2
 

Here we see t taking a value which is different from p-1. 

This process continues but as the primes s and p become bigger, with p > s and s >2, 

we start noticing for a
s
 = b

p
 =1,  

and 

 a
-1

ba = b
t
, that t can assume several values. 

Our previous examples showed that we can have more than one value of t satisfying  

 t
s
 ≡ 1 (mod p) 

and non of such values is a power of the other. This informs that a group of order  

n = sp may have more than one non-Abelian type depending on the number of 

different values of t that can be determined. 
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PROOF (OF THE MAIN RESULT) 

 Let G be a group of order n = sp, with (s,p) = 1 and s<p. By Sylow’s Theorem there 

must be only one Sylow p-subgroup in G. This subgroup 

 K = ‹ b ›, bp
 = 1, 

which must be normal in G. 

Moreover, any other Sylow subgroup must be of the form 

 H = ‹ a ›, as
 = 1. 

Since KG and we have 

 a
-1

ba  K and 

 a
-1

ba = b
t
 

for some integer t. 

Clearly, if t = 1, we have that G is Abelian and so ab = ba. 

If p  1 (mod s) then there are s Sylow p-subgroup and we have for t ≠ 1, that 

             ( ) ktk1_k1_ bbaaaba ==  

That is  

 a
-2

ba
2
 = a

-1
(a

-1
ba) a = a

-1
b

t
a = 

ktb  

this will be repeated up to 

 a
-j
ba

j
 = 

jtb  for some integer j. 

If j = s then the above relation relation yields 

 b = a
-s
b

t
a

s
 = 

stb , 

we deduce that p|(ts
 – 1) ≡t⇒ s  1(mod p) 

Hence t
s 
- 1 = kp for some integer k. 

Therefore 

 t
s
 = kp+1 
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 and t = (kp + 1)
1/s

  

From our examples, if s = 2, we have one value for t. 

If s = 3, we have at most two values for t. 

Since t takes values in the interval 1<t<p which also satisfies the congruence  

t
s 
 1 (mod p).  We denote these values by ... ≠  t≠  t≠  t where, ... , t, t,t 321321  

and none is a prime power of the other. We have the following possibilities 

... ,bbaa,bbaa,bbaa 321 t1_t1_t1_ ===   

It is obvious that ... ≠b≠b≠b 321 ttt
 

Hence by Theorems 3.6, 3.10, and examples 3.4, 3.7, 3.8, 3.12, 3.13 and 3.14 we have 

determined different values of t which gave rise to different non-Abelian isomorphic 

types. 

 

4.6    COROLLARY 

Only one value of t satisfies the congruence t
2
  1 (mod p) where (2,p) = 1 and p is a 

prime. 

 

PROOF 

 Obviously p divides t
2
 - 1 which implies that t

2
 = kp +1, for some integer k.  By 

choosing the possible values of t in the interval 1 < t < p, we need to show that only 

one value of r satisfies the congruence t
2 
1 (mod p). 

From (4.1) this value is p -1.  That is, 

 (p - 1)
2
 = p

2 
-2p + 1. Hence p divides p

2
 - 2p.   

If on the contrary t = p - k, where k > 1 and k < p -1, then  

(p-k)
2 

= p
2
 - 2kp + k

2
 . 

This is not a multiple of p. 
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4.7    RESULT FOR GROUPS OF ORDER n = sp SUCH THAT P IS NOT      

         CONGRUENT TO 1 MODULO s.  

 

The groups of order n = sp such that p is not congruent to 1 modulo s cannot have 

non-abelian isomorphic type. 

 

PROOF:  

For G = ‹ x,y ›, x
s
 = y

p
 =1,  since y x  ≠ x y, then y x  = y

t
x , for some inter t > 1.     

So, 

   x
-1

y x  = y
t
,  

for some t in the interval 1 < t < p, will have order s or p.  No such r satisfies the 

closure property of such groups.  Hence groups of order n = sp such p is not congruent 

to 1 modulo s does not have a non-abelian isomorphic type. Hence such groups are 

necessarily cyclic. 

This affirms the assertion that: 

“There is just one group of order n if and only if n is a product of distinct primes 

k321 p,...,p,p,p  such that pj does not divide (pi – 1) for 1 ≤  i ≤  k, 1 ≤  j ≤  k”  

(John R. Durbin). 

The above conclusion was reached after considering the isomorphic types of groups 

of order n for each n from 1 to 32. 

Later on, we will see the extent of the truth of the above assertion when groups of 

order n factorizable into a product of three primes are considered. 

 

For groups of order n = spq where s, p and q are distinct primes we have the following 

result: 
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 or,1x,xH q ==  1y,yK p == 

GKorGH    

 .pqKH  





( ) 1zxy,z,xyG∴ spq === 





( ) t1_ xyxyzz = 



≡







≡

 ( stpq 

 pq≤t1< 


st 



 1kpqt s += 












 ( ) ;1z,1xy,zxy,G spq

ri
==  

 ( ) ( ) it1- xyzxyz =  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

Our work here was organized in the following manner: First we looked at groups of 

order 2p, where p is a prime.  Since every positive prime is congruent to 1 modulo 2, 

we did not have much difficulty in out lining the nature of the non-abelian groups of 

such orders. Next, we used our scheme to look at groups of order n = sp in which case 

we particularly looked at those prime greater 3 and are congruent to 1 modulo 3.  We 

also tried to display their defining relation in most of the cases. 

Armed with our scheme, we also sort for and obtained the number of non-abelian 

isomorphic types of groups of order 5p, 7p, 11p, 13p and so on. We kept the demand 

that p is congruent to 1 modulo 5, 7, 11, 13, in all the cases. 

From the group of order 15 = 3 x 5, we sought to see what would be the fate of groups 

whose prime factorization were such that none of the factors if congruent to one 

modulo the other. 

For groups of order n = spq, where s, p, and q are distinct primes, we first considered 

groups order 30, 42, and 70. One readily observes that such groups are of the form 

2pq where each of p and q is congruent to 1 modulo 2 but may not be congruent to 1 

modulo each order.  We later considered when s ≠ 2. The demand here is not 

restricted to each of the primes being congruent to 1 modulo others.  

 

6.1    SUMMARY OF RESULTS  

The area of group classification up to isomorphism and determination of isomorphic 

types of groups of certain orders is as old as group theory itself. 

There is no easy way out hence many tend to pursue it through different approaches. 

In this Thesis we devoted our work to finding the non-abelian isomorphic types of 

certain groups of order n = sp, spq and found the following: 
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1. We developed a scheme that determines the numbers that help to forms the 

non-Abelian isomorphic types of a group can be. 

2. We gave with examples proofs of the form of the non-abelian isomorphic 

types of groups of order 2p, 3p, 5p, 7p,…., and 2pq, 5pq, 7pq,… 

 

5.2  CONTRIBUTION TO KNOWLEDGE 

        (i)       That the number of the non-abelian isomorphic types of groups of order  

             n = sp increase as the values of s and p increase. 

 (ii)       Why groups of order n = sp, where p is not congruent to 1 modulo s,    

                   cannot have a non-abelian isomorphic type. 

(iii)      That groups of order n = spq have non-abelian isomorphic type 

irrespective of whether the prime factors are congruent to 1 modulo others, 

that is whether s divides p -1 and q -1. 

(iv)       That the relationship between the prime factors of the order of groups 

determine to a large extent whether such groups would have non-abelian 

isomorphic type or not. 

 

5.3  AREAS OF FURTHER RESEARCH 

1. There is room to further look at groups whose orders are factorizable into 

more that three factors. 

2. The use of those groups whose prime factors s and p such that p is not 

congruent to 1 modulo s. 

3. The possibility of the use of isomorphic types to resolve the fundamental 

relationship between the underlying biochemistry and the structure of 

erythrocyte and other cells. 

4. To determine the relationship existing between the different values of r and the 
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prime p in the non-Abelian isomorphic types of groups of order 3p, 5p, 7p and 

so on. 

5. To determine the non-Abelian isomorphic types of groups of order n = 11pq, 

13pq and so on where p, q > 13. 

 

5.4    CONCLUSION 

Based on our finding so far we showed that the number of non-abelian groups of 

order n = sp increase as s and p increase for p congruent to 1 modulo s in all the 

cases. Again, we see that for n = spq, the non-abelian isomorphic types do 

increase as s, p and q becomes larger due possibly to the congruent relationship 

among the prime factors. 
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