Prevalence and distribution of Candida Species in HIV infected persons on antiretroviral therapy in Jos

*Lar P.M, Pam K.V., Tiri Yop, Shola Olukose, Agabi Yusuf, Dashen M.M., Mawak J.D

Department of Microbiology, Faculty of Natural Sciences, University of Jos, Jos, P.M.B 2084, Plateau State, Nigeria

Faith Alive Foundation Hospital, Jos

Abstract

Oropharyngeal candidiasis (OPC) is commonly associated with HIV. The causative agent is a yeast strain that is originally present as a commensal of the oral cavity. Most species of the genus Candida that cause OPC in HIV patients if not identified and properly treated with the drug of choice could result in resistance to the drugs and make treatment very difficult. This study was carried out to establish the species spectrum of the common yeasts associated with OPC in HIV patients on antiretroviral treatment in Jos. A total of 248 samples was collected; one hundred and ninety eight (198) Throat swabs from HIV seropositive males and females at the 2 hospitals. 50 control samples from HIV seronegative persons were collected. The samples were cultured on Saburauds dextrose agar and Candida Species isolated were characterized using germ tube test and sugar fermentation tests. Out of 248 subjects (HIV positive and HIV negative individuals) were examined for oropharyngeal candidiasis, 24 (9.68%) yielded Candida growth. The age group 36-45 years accounted for the highest number 12 (50%) of isolates. Candida albicans accounted for 19 (79.2%) of the isolates, Candida pseudotropicalis 2 (8.3%), while Candida tropicalis, Candida parapsilosis and Candida guilliermondi had 1 (4.2%) isolates each. More women 18 (7.26%) had oropharyngeal candidiasis than men 6 (2.41%). 10% of the population studied were found to be colonized with Candida. HIV patients whether or not on drugs were predisposed to oropharyngeal candidiasis. C. albicans is the commonest species associated followed by, C. pseudotropicalis, C. tropicalis, C. parapsilosis and C. guilliermondi. Among patients on ART, Candida albicans was most prevalent 14 (58.33%). Candida guilliermondi was the only species of Candida found in HIV positive patients not on ARV. Candida albicans still remains the leading cause of oropharyngeal candidiasis in HIV infected persons within the study population. Constant identification of isolates of yeasts infecting HIV infected persons and the immune compromised will further enhance the appropriate treatment and minimise the speedy emergence of antifungal resistance.

Keywords: Candida species, characterization, oropharyngeal candidiasis.

INTRODUCTION

Oropharyngeal candidiasis (OPC) is the most frequent opportunistic fungal infection among Human Immunodeficiency Virus (HIV)-infected patients (Lattif et al., 2004). It has been estimated that more than 90% of HIV infected patients develop this often debilitating infection at some time during the progression of the disease (Samaranayake et al., 2000; Kamiru and Naidoo, 2002). The most common agents are Candida albicans, C. glabrata, C.krusei, C. tropicalis, C. parapsilosis, C. dubliniensis, (Colman et al., 1998; Sant'Ana et al., 2002). C. guilliermondi. Non albicans species are implicated with greater frequency as opportunistic pathogens associated with diseases especially in immunocompromised hosts Baradkar and Kumar, 2008. OPC typically occurs when the patient's CD4 counts are 200 or less. It is considered a clinical marker of immune failure in HIV/AIDS patients but the incidence of oral infection in HIV infected patients has not been well documented (Repentigny et.al, 2002). Oral candidiasis is frequently complicated with esophageal candidiasis which may limit food consumption and lead to weight loss, threatening the
general health of the HIV infected persons (Dunic, et al 2004) The prolonged management of oral candidiasis might cause the development of drug resistant candidiasis and there have been reports of emergence of resistance to antifungal agents in HIV patients with OPC due to resistant Candida isolates and this has made treatment with standard doses for standard duration time very difficult. Prolonged use of antifungal agents may predispose to a shift in non-albicans species associated with refractory and recurrent infections (Hamza, et.al 2008). Of concern is the full potential impact of antiretroviral therapy on the ability to reconstitute immunity and therefore reduce the incidence of oral candidiasis has been hampered by suboptimal adherence, toxicity and resistance to the antiretrovirals as well as limited availability of these treatments in developing countries where most HIV patients reside (Dabyshire, 2000). OPC increases morbidity, mortality and also reduces the quality of life of HIV- infected patients. The different species of Candida that cause OPC in HIV patients if not identified and properly treated +with the drug of choice could lead resistance to the drugs and make treatment very difficult. This study was carried out to establish the prevalent Species of Candida in HIV patients taking ART in Jos.

MATERIALS AND METHODS

Study Area

This study was carried out in Jos plateau in central Nigeria; it is about 1800m above sea level. It is situated between latitude 09°00-10°30N and longitude 08°30-09°80E. It has annual mean temperatures at 13.9°C and annual temperature are average between 21°C-24°C especially at night. Occasionally, ground temperature drops to below freezing point. The study area experiences three seasons in the year; hot dry season, cold season and rainy season. The average annual rainfall is 750mm and the average annual relative humidity is 65%.

Study Population

One hundred and ninety eight, HIV seropositive males and females aged 18-70 years receiving antiretroviral therapy at Plateau State Specialist Hospital and Faith-Alive Foundation, Jos were recruited for this study. Fifty Control samples from HIV seronegative persons was collected.

Collection of Samples

Throat swabs were collected from the subjects using a spatula and sterile cotton swab. The spatula was used to hold down the tongue to avoid picking normal flora from the tongue. The sterile eyepon swab sticks were used to gently swab the oropharyngeal surface and removed in such a way that it doesn’t touch the tongue and quickly inserted into the sterile swab stick cover to avoid drying before it was transported to the laboratory.

Isolation of Candida Species Associated with Oropharyngeal Candidiasis in HIV Patients.

The organisms were cultured by carefully streaking the swab stick on the petri dish containing Sauboraud Glucose Agar was used near a heat source to avoid contamination and kept in the incubator at 37°C for 3-5 days.

Subculturing

After culturing for 3-5 days, the colonies that are creamy, pasty and creamy were sub cultured on saborauds dextrose agar to get pure cultures which was used for analysis.

Characterization of Candida Species Associated with Oropharyngeal Candidiasis in HIV Patients

The isolated colonies were gram stained to identify yeast cells of the genus Candida which grew as oval budding yeast cells.

Germ Tube Test

Candida albicans from samples suspected to be Candida species by using Germ tube test briefly described; 0.2 ml of sterile human serum was transferred into a test tube. The organism was introduced into the test tube containing the serum using a sterile inoculating needle. It was incubated at 37°C for ninety minutes. A drop of the sample was placed on a clean slide and viewed under x 10 and x 40 objective of the microscope. The microscopic observation revealed short hyphal strands which were not constricted at the junction of the blastoconidia and the germ tube.

Biochemical Test for the Identification of Candida Species

Sugar Fermentation and Assimilation

Non-albicans species of Candida were characterized using sugar fermentation and assimilation tests. Sugar solution was prepared in peptone water. Two grams of peptone water and 1g of NaCl was dissolved in 200ml
Table 1. Age and Sex Distribution of HIV-1 Positive patients on ART at PSSH and Faith Alive Foundation in Jos

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Male No of samples</th>
<th>Females No of samples</th>
<th>Total No of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-25</td>
<td>8</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>26-35</td>
<td>35</td>
<td>70</td>
<td>105</td>
</tr>
<tr>
<td>36-45</td>
<td>14</td>
<td>61</td>
<td>75</td>
</tr>
<tr>
<td>46-55</td>
<td>3</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>56-65</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>66-75</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>206</td>
<td>248</td>
</tr>
</tbody>
</table>

Age group (years) - age of study subject
Sample numbers (MALES)-number of male subjects
Sample number (FEMALES) - number of female subjects
Total sample number- total number of male and female subjects

RESULTS

Prevalence of Candida Species

Out of the 248 subjects examined for oropharyngeal candidiasis, 24 (9.68%) yielded Candida species. Males accounted for the higher prevalence 6(14.29%) compared to 18(8.74%) in females. The age group 40-44 years accounted for the highest prevalence 6 (25.00%) followed by the age group 35-39 6(11.32%). Other age groups had the following prevalence 45-49 4(10.81), 25-29 3(12.50%), 30-34 3(4.05%) and ≥50 2(13.33%). The lower age brackets (14-19 years and 20-24 years) yielded no Candida growth (Table 1).

Characteristic of Candida species

Of the 24 Candida species isolated, 19 (79.17%) were germ tube formers and were identified as Candida albicans. The non-albicans species identified were: Candida tropicalis 1(4.17%), Candida pseudotropicalis 2(8.33%), Candida parapsilosis 1(4.17%), and Candida guillermondii 1(4.17%) (Table 3).

Distribution of Candida species in relation HIV serostatus and therapy

Candida albicans was the most prevalent species isolated from both HIV seropositive subjects on ART (77.78%) and those not on ART (83.33%). Other species recovered from patients on ART were; Candida pseudotropicalis 2(11.11%), Candida tropicalis 1(5.56%) and Candida parapsilosis 1(5.56%). Candida guillermondii was the only non-albicans species found in patients not reciving ART (Table 4).

DISCUSSION

The carriage rate of Candida in the mouth of HIV seropositive people in Jos is 9.68%, this rate is lower than the 34.4% reported by Enwuru et al., 2008 from HIV seropositive people in Lagos Nigeria, Agwu et al. (2011) in Uganda found Candida species in 52% of their subjects who had HIV and were on antifungal therapy, carrier rate was higher than in studies from Thailand (adults 66.6 % and children 70 % (Teanpaisan and
Table 2. Germ Tube Formation, Sugar Fermentation and Assimilation of Candida Species Isolated From HIV Positive Patients In Jos

<table>
<thead>
<tr>
<th>S/N</th>
<th>Growth On SDA</th>
<th>Germ tube test</th>
<th>Pseudohyphae</th>
<th>SUGAR ASSIMILATION</th>
<th>FERMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dex</td>
<td>Suc</td>
<td>Lac</td>
<td>Gal</td>
<td>Xyl</td>
</tr>
<tr>
<td>1</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>_</td>
<td>+</td>
<td>_</td>
<td>+</td>
</tr>
<tr>
<td>6-24</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

Key:
+ implies Assimilation; - implies No Assimilation; F implies Fermentation;
Dex- dextrose, Suc-sucrose, Gal- galactose, Xyl- xylose, Raff-raffinose, Lac- lactose, Ara- arabinose
√ Fermentation and Sugar assimilation not carried out

Table 3. Species of Candida Obtained From 248 HIV Infected Patients and HIV Negative Persons Attending Plateau State Specialist Hospital and Faith Alive Foundation

<table>
<thead>
<tr>
<th>Species of Candida</th>
<th>Number of Isolates</th>
<th>% Number of Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida albicans</td>
<td>19</td>
<td>79.2</td>
</tr>
<tr>
<td>Candida pseudotropicalis</td>
<td>2</td>
<td>8.3</td>
</tr>
<tr>
<td>Candida parapsilosis</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>Candida tropicalis</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>Candida guilliermondi</td>
<td>1</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Species of Candida- organisms isolated
Number of isolates- frequency of occurrence of Candida species
% number of isolates- % frequency of occurrence of Candida species

Table 4. Species Distribution of Candida Species in HIV Positive and HIV Negative

<table>
<thead>
<tr>
<th>Subject</th>
<th>Species</th>
<th>Number of Isolates</th>
<th>% Number of Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>On ARV</td>
<td>Candida albicans</td>
<td>14</td>
<td>58.8</td>
</tr>
<tr>
<td></td>
<td>Candida pseudotropicalis</td>
<td>2</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>Candida tropicalis</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Candida parapsilosis</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>Not on ARV</td>
<td>Candida albicans</td>
<td>5</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td>Candida guilliermondi</td>
<td>1</td>
<td>4.2</td>
</tr>
</tbody>
</table>

KEY:
Subjects- HIV patients on ARV and those not on ARV involved in the study
Species- species of organism isolated
Number of isolates- frequency of occurrence of Candida species isolated
% number of isolates- % frequency of occurrence of Candida species isolated

Nittayananta, 1998; Pongsiriwet et al., 2004). Hong Kong (54.8 %) Tsang and Samaranayake, 2000, Italy (61.9 %) Campisi et al., 2002, Germany (73.8 %) Schmidt-Westhausen et al., 1991 and India (65.3 %) Gugnani et al., 2003. The low prevalence of oral candida in this study may be attributed to patients strict adherance to thier antiretroviral regimen. The carriage rate was found to be more in women(7.26%) than in men (2.41%), this is probably because most men rarely go for routine check ups until the disease has reached symptomatic stage and
as at the time of this study only a few men concencted. People around the age range of 36-45 accounted for the highest prevalence rate. Among the patients examined only two reported having having pain when swallowing food and having altered taste, this suggest that oropharyngeal candidiasis in most cases is asymptomatic.

The results of this study provides evidence of the isolation of Candida species in the oral pharyngeal swabs of HIV infected persons on Antiretroviral therapy (ART) as well as in those not on ART in Jos. HIV seropositive people weather or not on ART are predisposed to oropharyngeal candidiasis. This does not agree with most studies, Cassone et al. (1999) reported that following the introduction of highly active antiretroviral therapy (HAART) there was a reduction in occurrence of opportunistic infections, prevalence of oral manifestations and oral candidiasis. Arribas et al., also suggested that that the reduction in the frequency of oral candidiasis was only related to immunological improvement after introduction of antiretroviral therapy including protease inhibitor (PI), which increases the number of CD4+ T cells. In another study out of 69.4% of patients undergoing HAART and 59.5% of patients without this inhibitor (PI), which increases the number of CD4+ T cells. In another study out of 69.4% of patients undergoing HAART (36.1%) than in patients without antiretroviral therapy (45.9%) (Sanchez et al., 2005). However some HIV positive patients with relatively high CD4+ cell counts develop oral candidiasis (Kahn and Walker, 1998). Control samples obtained from HIV sero-negative persons did not show any growth on Saboraud’s dextrose agar (SDA). This differs from the reports of Hamza et.al, (2008) that Candida species can be found in both HIV positive and HIV negative persons with a significant difference in oral carriage of the organism.

Candida albicans was the most frequently isolated species. This also confirms findings of Enwuru et al. (2008) and Rejane et al. (2002) who reported 40.5% and 57.4% in Lagos and Brazil respectively. Similarly, Nweze and Ogbonnaya (2011) evaluated the species spectrum of yeast cells occurring in oral lesions of HIV positive persons in Nigeria and reported finding 60% yeast cells carriage in those on ART and C.albicans to be the most predominant species occurring. C. albicans is followed in frequency by, C. pseudotropicalis, C. tropicalis, C. parapsilosis and C.guilliermondii. Baradkar and komar, (2007) however, found C. parapsilosis to be second most most frequently isolated species after C. albicans. Costa et al. (27) also reported that Candida albicans presented the highest frequency (50%) whereas non-C. albicans species were represented by C. tropicalis (20.9%), C. parapsilosis (19.3%), C. guilliermondii (4.8%), C. lusitaniae (1.6%), C. krusei (1.6%), and C. kefyr (1.6%) were present. Candida guilliermondii was not present in HIV patients on ART but was isolated in patients not on ART, although Candida albicans still remains the leading cause of oropharyngeal candidiasis in HIV infected persons. Care must be taken in identifying these species especially amongst persons that are immunocompromised, in order to guide treatment.

CONCLUSION

Several Candida species cause oropharyngeal candidiasis exists in about 10% of HIV/AIDS infected patients attending Plateau State Specialist Hospital and Faith- Alive Foundation, Jos. Routine checks for opportunistic infections including oropharyngeal candidiasis is important and should be carried out as at when due because it helps to monitor disease progression and it prevents complications such as candidemia. Identifying Candida to its species level is important because it helps guiding appropriate treatment. HIV patients not on drugs should also be screened for oropharyngeal candidiasis because the presence of OPC in such individuals could be an indication to start antiretroviral therapy.

REFERENCES


