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Abstract – It is well known that if the largest or smallest
eigenvalue of a matrix has been computed by some numerical
algorithms and one is interested in computing the
corresponding eigenvector, one method that is known to give
such good approximations to the eigenvector is inverse
iteration with a shift. For complex eigenpairs, instead of
using Ruhe’s normalization, we show that the natural two
norm normalization for the matrix pencil, yields a
quadratically convergent algorithm. Numerical experiment is
given which confirms the theory.
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I. INTRODUCTION

Let A be a large sparse, real n by n nonsymmetric
matrix and a symmetric positive definite matrix.
In this paper, we consider the problem of computing the
eigenpair (z, ) from the following generalised complex
eigenvalue problem

where is the eigenvalue of the pencil (A, B) and z
its corresponding complex eigenvector. We assume that
the eigenpair of interest (z, ) is algebraically simple, so
that H the corresponding left eigenvector is such that [9,
p. 136]

By adding the normalization

to (1) and ,Tv z    with v = [zT, l], the combined
system of equations can be expressed in the form F(v) = 0
as

Note that zHBz is real since B is symmetric and positive
definite. This results in solving a system of n complex and
one real nonlinear equation for the (n +1) complex
unknowns  , Tv z  . Note that, if z from (z, ) solves

(4), then so does ie z for any [0, 2 )  . Hence, (4) does
not have a unique solution. Another drawback of the
normalisation (3) is that z in is not
differentiable1. Therefore, we cannot just differentiate (4)
and apply the standard Newton’s method. In this article,
we shall show how these drawbacks can be overcome, at
least for the B = I case.

Recall that for a real eigenpair (z, ), (4) gives (n +1)
real equations for (n + 1) real unknowns and Newton’s

method for solving (4) involves the solution of the (n + 1)
square linear systems

for the (n + 1) real unknowns ( ) ( ) ( )v   z ,
Tk k kD    

  ,

and updating ( 1) ( ) ( )v  v  vk k k    for k = 0, 1, 2, . . ..
Secondly, for (z, ) complex, Ruhe [7] added the
normalization cHz = 1, where c is a fixed complex vector
instead of (3), so that (1) and cHz = 1 provide (n + 1)
complex equations for (n + 1) complex unknowns, and the
Jacobian of this system is

The above Jacobian is square and can be easily shown to
be nonsingular, using the ABCD Lemma if the eigenvalue
of interest is algebraically simple and cHz 6= 0 at the root.
One major distinction between our normalization and
Ruhe’s is that, ours is the natural normalization for an
eigenvector and we do not worry about how to choose c.
Parlett and Saad in [6], studied inverse iteration with a
complex shift i     where a and b are real. They
showed that by replacing the shifted complex system
( )A B B    , with a real one, the size of the problem is
doubled, where 1 2 1 2,i i          for 1 2 1, , ,  

2
nR  and 1i   is the imaginary unit of a complex

number. This is because solving a complex linear system
of equations takes twice the storage and is roughly three
times the cost of solving a real system [4]. When real
arithmetic rather than complex arithmetic is used, we lose
any band structure in A and B [6]. The numerical
examples in [6], show linear convergence to the
eigenvalue closest to the fixed shift.

Next, Tisseur in [8] considered the symmetric definite
generalised eigenvalue problem ,A B R     as a
special case of (1) where A is symmetric and B is
symmetric positive definite but with the real normalization

where (see, for example, [8, p.
1049]) and ej is the jth column of the identity matrix.
The real scalar t is introduced to scale F(w) and Fw(w)
when A and1 B are multiplied by a scalar. In this case,

1For a single variable, if z = x + iy, z = x – iy, then the Cauchy-
Riemann equations are not satisfied because, with u(x, y) = x, v(x, y) = –
y, then ux(x, y) = 1 and vy(x, y) = –1, whereas the Cauchy-Riemann
equations (see, for example [3]) require that ux(x, y) = vy(x, y). This
shows that z is not differentiable at (x, y).
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Tisseur [8], showed that the Jacobian Fw(w) above is
singular at the root if and only if l_ is a finite multiple
eigenvalue of the pencil (A,B). The main result in [8] is
Theorem 2.4 [8, pp. 1044-1046]. It shows that if the linear
system to be solved is not too ill conditioned, the solver is
not completely unstable, the Jacobian is approximated
accurately enough and we have a good initial guess very
close to the solution, then the norm of the residual reduces
after one step of Newton’s method in floating point
arithmetic. The main point is that both [7] and [8] used
two different differentiable normalisations, while in this
paper we analyse the natural extension of the distance
norm, which is a non differentiable normalization and so
leads to interesting theoretical questions.

In addition, it was shown numerically in [8, pp. 1053-
1054] that if Newton’s method is applied in floating point
arithmetic with mixed precision iterative refinement, the
linear solver is unstable and there are inaccuracies in
computing the Jacobian, then this may affect the rate of
convergence of Newton’s method but not the accuracy and
stability of the computed eigenvalues.

Our approach for analysing the solution of (4) for v
begins by splitting the eigenpair (z, ) into their real and
imaginary parts: z = z1 + iz2,  =  + i where 1 2, nz z R ,
and , R  . After expanding (4), we obtain a real system
of (2n + 1) under-determined nonlinear equations in (2n +
2) real unknowns v = [z1, z2, , ]T, and it is natural to use
the Gauss-Newton method (see, for example, Deuflhard
[?, pp. 222-223]) to obtain a solution. By linearising the
system of under-determined nonlinear equations, we
obtain a system of under-determined linear equations
involving the corresponding Jacobian. The key result in
this paper is Theorem 2.1.

This article is structured as follows. In Section II, we
show that for an algebraically simple eigenvalue, the
Jacobian is of full rank at the root with a known
nullvector. A numerical example is given in Section III
which confirms the validity of the theory. Throughout this
paper, . . 2.

II. COMPUTATION OF COMPLEX EIGENPAIRS
BY SOLVING AN UNDER-DETERMINED SYSTEM

OF NONLINEAR EQUATIONS

In this section, we will expand the system of n complex
and one real nonlinear equations in (n + 1) complex
unknowns (4) by writing z and  as z = z1 + iz2, and  = 
+ i, respectively. The reason for having an under-
determined system of equations instead of a square system
of equations is because, expanding zHBz = 1 gives only
one real equation, since B is symmetric positive definite,
while (A-B)z = 0 results in 2n real equations. This results

in a real (2n+1) underdetermined system of nonlinear
equations in (2n + 2) real unknowns. This will then be
followed by presenting the real under-determined system
of nonlinear equations and an explicit expression for its
Jacobian. Furthermore, we will show in the main result of
this paper-Theorem 2.1 that, if the eigenvalue of interest in
(A,B) is algebraically simple, then the Jacobian has
linearly independent rows at the root. We will find the
right nullvector of the Jacobian at the root. We conclude
the section by presenting an algorithm for computing the
complex eigenpair of the matrix pencil (A, B).
If we let z = z1 + iz2,  =  + i, then the nonlinear system
of equations (4) can be written as

and

Hence, (3) implies that

Since (A – B)z = 0, we equate the real and imaginary
parts of (7) to zero and obtain the 2n real equations

and

This means, F(v) consists of the 2n real equations arising
from (7) and one real equation

where The Jacobian, Fv(v) of F(v)

with  1 2, . Tv z z  has the following explicit expression

and is a (2n + 1) by (2n + 2) real matrix. We define the
real 2n by 2n matrix M as

Also, we form the 2n by 2 real matrix

consisting of the product of and the matrix
of right nullvectors (given in the next equation) of M at the
root, where

and O is the n by n zero matrix. The Jacobian (10) can be
rewritten in the following partitioned form
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with M, N defined in (11) and (12) respectively. Note that
because at the root,

this implies that 1

2

z
z
 
 
 

or its nonzero scalar multiple is a

right nullvector of M. In the same vein, we find

and 2

1

z
z

 
  

or its nonzero scalar multiple is also a right

nullvector of M at the root.
Since the eigenvalue  of (A,B) is algebraically simple

by assumption, then by (2), we need to give explicit
expressions for the left nullvector of (A – B) in order to
prove that the Jacobian has full row rank at the root.
Observe that for all , we define

1 2 ,i     , where 1 2, ,nR   , then this implies

Hence, and

The implication of this is
that

which means, or its nonzero scalar multiple is a
left null-vector of M. Similarly,

and it shows that is also a left nullvector of M.
So we form the matrix C consisting of the 2-dimensional
left nullvectors of M at the root (in practice C is not
computed), as

Now, observe that the condition (2), implies

Since this implies

Before we continue with the rest of the analysis,
wepresent the main result of this section which shows that
the Jacobian (10) has a one dimensional nullvector at the
root.

Theorem 2.1: Assume that the eigenpair (z, ) of the
pencil (A,B) is algebraically simple. If z1 and z2 are

nonzero vectors, then is
the eigenspace corresponding to the zero eigenvalue of
Fv(v) at the root.
Proof. Post-multiply Fv(v) by the unknown nonzero

vector equate to the zero vector and solve

where M and N are as defined in (11) and (12)
respectively. After expanding, we have the following set
of equations

By premultiplying both sides of (17) by CT, we obtain

But, CTM = 0T. Consequently, we are left with CTNq = 0,
or

using (16), which implies H is nonsingular. Thus, q =
0. Equation (17) now becomes Mp = 0, meaning that
p  N(M), p = µw+ w1. From (18),

Now, because we have
µ = 0 and so

Hence, for all
also satisfies equation (18). Therefore, we obtain

 2 1, ,0,0 Tz z    as the only nonzero nullvector of
Fv(v). The next result is a corollary to Theorem 2.1 and it
shows that the Jacobian (10) has linearly independent rows
at the root.
Corollary 2.1: If the eigenpair (z, ) of (A, B) is
algebraically simple, then the Jacobian Fv(v) in (14) is of
full rank at the root.
Proof. Since Theorem 2.1 guarantees the existence of a
single nonzero nullvector of Fv(v) at the root, then rank
(Fv(v)) = 2n+1 (using the dimension theorem, see, for
example, [5]). Therefore, the Jacobian (10) is of full rank
at the root.
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Next, in order to solve the under-determined system of
nonlinear equations (9), we need to linearize F(v) = 0.
After linearizing F(v) = 0, we have to solve the following
under-determined linear system of equations

Hence, solving for
involves solving a 2n + 1 real under-determined linear
system of equations for the 2n + 2 real unknowns

We find the reduced
QR factorization where in this case Q and
R are (2n + 2) by (2n + 1) and (2n + 1) by (2n + 1) real
matrices respectively. Hence, we solve

and then obtain the solution
to (20) as

and update Since we have shown
that the Jacobian has linearly independent rows in
Corrolary 2.1, the whole analysis now gives rise to the
following algorithm, namely, the Gauss-Newton method
applied to F(v) = 0.
Eigenpair Computation using Gauss-Newton’s method

The stopping condition for the algorithm above is

Next, we give the following numerical example to
illustrate the above theory.

III. NUMERICAL EXPERIMENT

Consider the 200 by 200 matrix A bwm200.mtx from
the matrix market library [1]. It is the discretised Jacobian
of the Brusselator wave model for a chemical reaction.
The resulting eigenvalue problem with B = I was also
studied in [6] and we are interested in finding the
rightmost eigenvalue of A which is closest to the
imaginary axis and its corresponding eigenvector.

In this example, we take (0) (0)0.0, 2.5    in line

with [6] and took
where 1 is the vector of all ones. The algorithm is stopped
as soon as ( )kv is less than or equal to 5.610–14. The
computed eigenpairs are shown in Table I. Observe that
we obtained quadratic convergence from the second to the
last and the last columns of Table I for k = 3, 4, 5, 6 and 7.
At the root, the condition number of Fv(v(k)) is
approximately 3103. w(k) in the above table represents

Table I: Values of ( )k and ( )k . Columns 6 and 7 show that the results converged quadratically for k = 3, 4, 5, 6 and 7.

IV. CONCLUSION

While Ruhe’s normalization requires the choice of a
starting vectore c, our normailization is the natural two-
norm normalization for an eigenvector and we do not need
to worry about how to choose c. The new approach gives
quadratic convergence to the complex eigenpair of
interest.
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