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ABSTRACT: This paper derived and established the structure of determining matrices for a class of double —
delay autonomous linear differential systems through a sequence of lemmas, theorems, corollaries and the
exploitation of key facts about permutations. The proofs were achieved using ingenious combinations of
summation notations, the multinomial distribution, the greatest integer function, change of variables technique
and compositions of signum and max functions.

The paper has extended the results on single—-delay models, with more complexity in the structure of the
determining matrices.
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I. INTRODUCTION

The importance of determining matrices stems from the fact that they constitute the optimal
instrumentality for the determination of Euclidean controllability and compactness of cores of Euclidean targets.
See Gabasov and Kirillova (1976) and Ukwu (1992, 1996, 2013a). In sharp contrast to determining matrices, the
use of indices of control systems on the one hand and the application of controllability Grammians on the other,
for the investigation of the Euclidean controllability of systems can at the very best be quite computationally
challenging and at the worst, mathematically intractable. Thus, determining matrices are beautiful brides for the
interrogation of the controllability disposition of delay control systems. Also see Ukwu (2013a).

However up-to-date review of literature on this subject reveals that there is currently no result on the
structure of determining matrices for double-delay systems. This could be attributed to the severe difficulty in
identifying recognizable mathematical patterns needed for inductive proof of any claimed result. Thus, this
paper makes a positive contribution to knowledge by correctly establishing the structure of such determining
matrices in this area of acute research need.

II. MATERIALS AND METHODS
The derivation of necessary and sufficient condition for the Euclidean controllability of system (1) on

the interval [0, t,], using determining matrices depends on
1) obtaining workable expressions for the determining equations of the nxn matrices @;(h). for
j:it—jh>0,k=0,1,-
2)  showing that AX™ (&, — jh, t,)=(—1)*Q.(jh),for j: ty — jh =0,k = 0,1,...
3)  where AX® (¢, — jh,t) =X® (8, — jh), ) —XE (2, — jR)*.E,)

4)  showing that Q, (t,) (t,) is a linear combination of

QO(S),Ql(S),- o th-l(s); s=0,h,-- (n —1)h
See Ukwu (2013a).

Our objective is to prosecute task (i) in all ramifications. Tasks (ii) and (iii) will be prosecuted in other papers.

2.1 Identification of Work-Based Double-Delay Autonomous Control System
We consider the double-delay autonomous control system:

x(t)=Ax(t)+Ax(t—h)+Ax(t-2h)+Bu(t);t=0 6h)

x(t)=¢(t),te[-2h,0],h>0 (2)
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Where A, A,, A, are NxN constant matrices with real entries, B isan NxM constant matrix with

real entries. The initial function ¢ isinC ([—Zh, O], R" ) the space of continuous functions from [—2h, 0]

into the real n-dimension Euclidean space, R" with norm defined by ||¢|| = Sup ‘¢(t)‘ , (the sup norm). The
te[-2h, 0]

control u is in the space L ([0, ti], R" ) , the space of essentially bounded measurable functions taking [0, tl]

into R" with norm ||¢|| = esssup|u(t)| :
t [0, ]

Any control ue L ([O,L_], R”) will be referred to as an admissible control. For full discussion on
the spaces C°*and L, (or L"), pe{L,2,...,00}, see Chidume (2003 and 2007) and Royden (1988).
0" X (z, 1)

K i

2.2 Preliminaries on the Partial Derivatives k=0,1--

or

Lett, 7 €[0,t,]. For fixed t, let 7 — X(z,t) satisfy the matrix differential equation:
%X(r,t):—X(r,t)AO—X(z'+h,t)A1—X(2'+2h,t)A2 3)

In; =t

for O<z<t,z #t—kh k=0,1.. where X(r, t)={0. ot

See Chukwu (1992), Hale (1977) and Tadmore (1984) for properties of X(t, r) . Of particular
importance is the fact that T—> X(r,t) is analytic on the
intervals(tl—(j+1)h,t1—j h), j=01..t—(j+1)h>0. Any such Te(tl—(j+1)h,t1—j h) is

called a regular point of 7 — X(t, T) . See also Analytic function (2010) for a discussion on analytic functions.

k

Let X (z,t) denote

S X(z,t,) , the k™ partial derivative of X(T,tl) with respect to 7, where 7 is in

(tl—(j+1)h, t—j h); j=01,.,r, for some integer r such that t;-(r+2)h>0.
Write X<V (z',ti) =5£Xk (r,tl).
T

Define:

AX(k) (ti - jh’tl) = X(k) (tl’(t'l - J h)i ’tl)_X(k) ((tl - J h)+ ’tl)' (4)

for k=0,1,...; j=0,1,...;t, — jh >0,
where X/ ((t1 —-jh), tl) and X (tl,('[1 —jh) ,tl) denote respectively the left and right hand

limits of X(k)(r,tl) at 7 =1t;— jJ h. Hence:
X(k)((tl— jh)_’ti): lim X(k)(r,tl) (5)
7>t —jh
t-(j+Dh<z<t —jh
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: — i ()
XO(t-jhy)= tim  x(wt) (6)
T —>t—jh
t—jh<z<t —(j-Dh
2.3 Definition, Existence and Uniqueness of Determining Matrices for System (1)
Let Q « (s) be then Nx N matrix function defined by:

Q.(s)=AQ. (s)+AQ (s—h)+AQ_, (s—2h) @)

for k=1,2,---; s> 0, with initial conditions:
Q(0) = 1, ®)
Q,(s)=0;s#0 (9)

These initial conditions guarantee the unique solvability of (7). Cf. [1].
The stage is now set for the establishment of the expressions and the structure of the determining matrices for
system (1), as well as their relationships with X(k)(t,r) through a sequence of lemmas, theorems and

corollaries and the exploitation of key facts about permutations.
2.4 Lemma on permutation products and sums

[P A ive i
Let I,,I,I, Dbe nonnegative integers and let PO(ro),l(rl),Z(rz)

0,0,..0 1,1,...1 2,2,...2: the permutations of the objects 0,1,and 2 in which i appears r, times, i € {0,1,2}.
—— —— —

denote the set of all permutations of

T, times 1, times T, times
iL . .. . L . .
Let PO(rO),l(rl),Z(rz) denote the subset of PO(rO),l(rl),Z(rz) with leading 1, that is, those with I occupying the first
position. Let P(;(Tro) 1(5),2(5) denote the subset of R)(ro) 104)2(5) with trailing I , that is, those with | occupying the

last position. Set I' =1, + 1, +I,. Then for any fixed I, I}, I,

2 2.
(a) D A A :sr(ro,rl,rz)zz )) A A, =ZS;L(FO’H’F2)
(Vl’---"r)epo(ro). 1(r2)1(r2) i=0 (Vl’"'v")EPO(ro). Yra)a(r2) i=0
=A, > A A (san(r) + A > A, A [san(r)
(Vievrs)e Fo(maxfo.ro-1)) 1(r1)1(r2) Vi) € By, amaforsa))a(r2)
LA, 5 A, A [son(r,)
(Vl""vrfl) < PO(rO), 1(r1), Z[max{o, r2—1})

2 2
(b) ¥ A i A, =S (0= > A A =D 8T (1,1,1,)
(vl,...vr)e PO(ro), Yra)a(r2) i=0 (vl,...vr)e PO(rO). 1(r1)1(r2) i=0
= > A A TASIN() + > A A |ASn(r)
(Vieves)e Fo(max{o.ro-1) 1(r2)1(r2) VY1) € By afmafors1])a(ro)
+ > A, A |Asan(r,)

(v1 ,...Vr,l) € Po(ro), 1ry), z(max{O, 2 4}]

(c) Hence for all nonnegative integers Iy, I;, I, suchthat =1, +1 +T,,
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S A A =S (nn) =Y S AA,

(Vl,...vr)e P?((Ji(r)l)fr(zrl:)rl(rz) i=0 (Vl Vr) ) &rr)J‘rl),l'[rz)

:ZZ: z Sr”‘(l’o,l’l,l’z)

i=0 ro+ry+ry=r

Similar statements hold with respect to the remaining relations. Note that
2 r r-h

> Ao Ay = ZZZ X AnsA,

i=0 (vl,...vr)ePc')'-rij 1[rl],2[r2] i=0 rp=0n= (Vl""vf)epétro), 1(r1).2[r2)

rotrptro=r
sgn(ri) ensures that the corresponding expression vanishes if I, =0 => A, does not appear and so cannot be
factored out. max{0, r, —1} ensures that the resulting permutations are well-defined.
In order not to clutter the work with ¢ max{0, r; =1} and * sgn(r,) ’, the standard convention of letting

> A, ... A, =0, forany fixed iy, i, ;i +F +F, =r:f <0,for someie<{0,1,2}
(Vl’"'vr)e PO(fo), 1(r1),1(f2)
would be adopted, as needed.
Proofs of (a), (b) and (c)
Every permutation involving 0, 1, and 2 must be led by one of those objects. If 0, 1 and 2 appear at least once,

then each of them must lead at least once. Equivalent statements hold with ‘led’ replaced by ‘trailed’ and ‘lead’
replaced by ‘trail’. Hence the sum of the products of the permutations must be the sum of the products of those

permutations led (trailed) by A,, A, and A, respectively. Consequently,

r o ¢ g
S 2 A A =D z SHUN A -r)
fo=0r,=0 (Vl""vr)e PO(ro), 1(ra),2(r-ro-r1) ro=0r=0
ro+ri+ro=r
2 ror-i,
:Z > z S, (ry,r,,r —r, —1,) | restricted to those permutations with leading(trailing A.)
i=0 \ p=0r;=0

=A,S, ,(max {0, r, —1}, L r)san(r,) +AS,  (r,, max {0 1} ,r,)sgn(r,)
+A,S, (r,,r max{O r, })sgn(rz)

0771

SH(max{O, r,— } L) A son(r,) + S, ,(r,,m {0, rl—l},rz)Alsgn(rl)
+S, ,(r,,r max{O r, })Azsgn(rz)

0r"1?

2.5 Preliminary Lemma on Determining Matrices Q, (S),S€ R
(i) Qxl0)= 43
(i) Qu(s) = 0ifs = rh foramy integer r
(iii) @xls) = 0if s <0
(iv) @ixlh) = x A -4, k=1
(4, ---ve)e Pﬂ.’i-fl_ Ll -

(v) Q. (jh)=A;sgn(max{0, 3- J'}), j=0.
i) ¥ (e, = (- A)F = (DR k=12,
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Vi) x™ (t7.£,), = 0

AX(t, - jh,t) = o 11120
(viii) LEIND= ) otherwise

Proof
() Q100 = 4pQo(0) + A;Qo(—h) + A;Qp(=2R) = A0y, + 4.0 + A 0= 4
Assume that §,(0) = Af for1 =k =mn, for any integer n.
Then, Qn..(0) = A;Q,000+ 4,Q,(—h) + A4,Q,(-2h)
= ApAR + A,Q.(—h) + A,0Q,(—2h), (by the induction hypothesis).
We need to prove that @,(—h} =0 = Q,(-2h)
Assertion: @;(s} = 0 ifs <0
Proof: @,(s) = 4;Qp(s) + 4, Qpls — B) + 4;Q, (s — 2R)
=4,.0+ A4,.0 + A,.0 = 0, (by the definition of Q,(s)).
So the assertion is true for k = 1.
Assume that Q;(s) = 0 for s < 0, for 2 = k = =, for some integer n. Then
Qu+1{5] = ADQE{‘S] + .41@”{5— h) + AEQE{‘S_ 2h)
=A,0 + A0 + A, =0,
by the induction hypothesis, since 5 << 0, ==s—h =0, s—2h = 0.
Therefore, @x(s) =0 ¥ s < 0.Hence Q,,,(0) = AZF*%, proving that
2,0} = .-’lg_ for every nonnegative integer. k
(i) Letk=1and lets = vk for any integer r. Then
Q.(s) = A,Q.0s) + 4,Q,(s —h) + 4,Q,(s — 2h)
= 4.0+ A,.0 + 4,.0 =0, sinces ¢{0.h2h.}
Assume that @;(s) =0 for 2 = k < n, for some integer n. Then
I-?r:+1.|:5:I = ADQr:{s] + ALQn{s_ h'] + "12 Qn{'s_ Eh]
= 4,0+ A0+ A0 =0,
by the induction hypothesis. Hence @y (s) = 0 ¥ s # rh, for any integer r
(iii) This has already been proved.
(iv) @.(h) = 4, Q,(h) + A,0,(0) + A,Q,(—h) = 0 + A, + 0 = A, by the definition of §,
=0+ A4+ 0=4= ) A,,. So(iv)istruefork=1.
Vi€ Po(1—1),1(1)
Assume (iv) is true for 2 = k& = n, for some integer n. Then
I:?r:+1.|:h'::I = ADQnGﬂ + ALQnm] + AlQrz{_h‘]

@, (= Z Al.__ | », by the induction hypothesis.
|’1'._, 1_"‘~| = Bean uy

Q.00 = A% @,(—=h) = 0,by () and (i) respectively

Therefore, Qn.y(h) = Z{l ..., with a leading 4;)
':1:'. 1'-'=I:r'..-IEE:II:r::I.'.I:'.:I N
Z ;‘[l._ '"-‘{1- .. with aleading 4,
T ’1"." 1'.||—'.\ = 'EII':H:'- Ly
= ; Z ‘{“: a -‘{1:.—-. = Z A/l o A/m-l - Z A/l o A/ml
e Fos VS Fpaiiny (V2 Vi) € Ponaanyaq (Vi Vi) € Ponaanya

So (iv) istrue for £k == + 1, hence true for all k= 1,
(v) @.(0)= A4,.9,(h) = A, by (i) and (ii) respectively
Q,(2h) = A,Q,(2h) + A,Qp(R) + A,Q,(0)
= A0+ 4,0 + A = 4
Forj =3.Q,Gh) = 4,0,Gh) + A4,Q,([j — 11n) + A,Q,([j — 21h)
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Nowj =0, j—1 =0and j—2=0sincej =3
Therefore, @, (jh) =0 ¥ j =3 (by the definition of @), proving (v).
(vi) X0 (et = Zx% Ve,
For k = 1, this yields
X0, e) = —x Ceft Ay — X ((t + 1)~ £)A, — X (8 + 2h) 5,0 A;
= — Ay — 0.4, — 0 Ay, since ¢, + jh=t, farj=1, 2,
Therefore X' £7,¢,) = —A, = (—1)A4,. Note that for T sufficiently, close to t;. T+ h = ¢t;

]
XDt = —[Ek'm{% t1]|.r=r;

= — X0t 04, — X0, + R t04; —XD((t+ 2h) . £)4; = — (—A4p)4,
—[- Xty + b)Y .t )4 — X0ty + 2R) .6y, 04, — Xty + 3R) .84, 04514,
—[- X, 4+ 20)7.2,.04, — XC(t.43R) .60 04; — X( 8y + 4h) . 8,) 454,
=AE—[-0A,— 0A; — 04,0 A, —[-04, — 04, —04,]4, = 4% = (—1)%4,
Assume that X9 (er,e,,) = (1074 for 3<k <n,for some integer n.

Then X OVt )= [aix <n>(f,tl)}\ﬁ X0t A,
T
~XO(t +h)7, t)A - XO((t +2n) 7, t)A, = (-1)-1) AV A, —0A —0A, =(-1)"" AT

Therefore X (k)(tl_,tl)z (—1)k A‘; , proving (vi)

(vii) X(k)(tf, tl) = o X9(z,,)=0, since 7 > t, - Therefore X ®(t, 1) =0, proving
(viii) aﬁ X(z,t,)==X(z,t,)A — X (z +h,t,)A — X(z+2h,t,)A,,
T

I, =t
O<tety,r®ty—jhij = 0,1, , ={n-
for T =t T#F by —jhij , where X{r.¢&) Ot
Let j be a non-negative number such that £; — jh = 0.

Then we integrate the system (3), apply the above initial matrix function condition and the fundamental theorem
of calculus, (F.T.C.) to get:

[ty —jRI~
L lx(ee)lar = XCeg - i) ) — X(0,2,), (by the F.T.C)

leg—jRl~
= — [ [X(ren)Ap + X( + Bty Ay + X (o 4 20,8, ) Ay dT

Similarly,
Xty — )t e )—%00,¢,)

(tg=jRI™
= —J. (.t A, + XG0 + bt DA, +X(T + 2h,£,)A,1d,
o

Therefore, X ({tl — jh) .t — X((t,—jh ) *E)

fea—iky
= [ Wt)dg + %G + bt DA, + X(x + 20 £)4,1d, =0,
tea=iky™
since t—= X(r.t,)4; + X(z + h.t, )4, + X(r + 2h.t, )4, is bounded and integrable (being of bounded
variation) and the factthat ™ [77 f(Ddt =0
for any bounded integrable function, f. Therefore AX(ty, —jh. £y} = 0. for j# 0
For j =0, we have AX(t, .} = X(¢,~.¢, )—X(¢r,¢,)=1,—0 = I,, completing the proof of (viii). See
Bounded variation (2012) for detailed discussion on functions of bounded variation.

2.6 Lemma on Q, (jh); je{2k-2,2k-1,--},k>1
Fork=1
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. 0 if j=2k+1 (@)
AEif j =2k ii)
0 (i) = ba 41 4“ Z;iu AT j=2k-1 (iif)
(g e Py, r=0
Z ‘Il {l + ZAL_---A[.*: if j=2k-2 (iv)
L e B (- e Bygry gy
Proof
Note that the first summations in (iv), yield Z A, A,

(Vy, Vi) € p1(2)12(k*2)

Q. ([2k +1]h) = AQ, ([2k +1]h) + AQ, , (2kh) + A,Q, , ([2k —1]h)
k=1 == @,(3h) =0, bylemma 1.4. Clearly @,(jh) = 0. forj = 3
So the lemma is valid for j = 2k +1, whenk =1
Assume that the lemma is valid for j = 2k + 1. for every integer, k such that
2 = k = n, for someintegern, Then

Q,([2n+1]n)= 40Qp_. ((2n + 11K + A, Qp_,(2nh) + A; Qp_y ([2n — 11R) (10)

=dAp. 0+ A4;.0+ A5.0 =10 (by the induction hypothesis), since

j=2n+1=2n-1+3=2lh-1+ Lj—1=2n=2-11+2=2nh-1)+1
j—2=2n-1=2m-1)+1land n—1<n
Equivalently, on the right-hand side of (1.10) set

k=n—-1 j=2n+1, inthefirstterm; K =n — 1, j = 2n,inthe second term

n—1, j=2n—1, inthe third term. Thenclearlyk< n and j >2k+1
Hence the induction hypothesis applies to the right-hand side of (1.10), yielding 0 in each term and consequently
0 for the sum of the terms. Therefore, Q, ([2n+1]h)=0
Forany j = 2n+1, QuUh) = 40  GR) + A, Qo (i — 111 + 4, @, ([ — 2]R)
Now j=2n4+l=2j—2>2n4+41-2=2n—-1+1 andj-1=2m—-1) +1.
Hence @,(jR) =0, ¥j=> 2n+ 1. Combine this with the case j = 2n.to conclude that
@.h) =0, ¥j = 2n + 1, proving that @ k) = 0,¥j = 2k + 1, k = 1, as required in (i) of lemma 2.5.
(i) Consider @i (2kh), for k = 1; this yields @,(2k} = A;. by lemma 1.5.

So (ii) is valid for k =1.
Assume the validity of (ii) for 1 = & = =, for some integer n. Then
Q,..(2[n+1]h) = 4,0,Cln + 111) + 4,0,([2n +1]K) + 4,0, ([2n]R)

Q,2n +1]r) =0, by @), and @,([2n +11) =0, by @) of lemma 2.5, since (2[n+4 1]h) = 2n + 1, and
2Zn+1=20n) +1.
@.(2nh) = A%, by the induction hypothesis; therefore, 4,0Q,(2nh) = A3+t
and Q,.,(2[n 4+ 11n) = AT*%, Hence Qx(2kh) = A%, ¥k =1,k integer, proving
(iiiy Fork=1,Q.2[k—1ln) = @,(h) = A,. by lemma 1.5 .
Now > AA, = D, A=A, for k=1 Soii)isvalidfork =1
(V1Y) € Pray (k) Vi Py
Assume the validity of (iii) for 1 < k < n, for some integer n. Then
@ns1(2(n + 1) — 1]R)=Qp,, ([2n + 1]R)
=4, Q.([2n+1]R) + 4,0,Cnh) + A,0,([2n — 1]1H)
Now  @,([2n + 1]h) = 0 by (i), @,(2nk) = A? by (i)
0, ([2n —1]h) = Z A, -~ A4, by the induction hypothesis .
IklEp 020

Therefore,
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Quir 2+ D~ 1) = A, A7 + 4, DA -4,

[ T T=F - P

= A, AT + DA, A
[T ey 1 E_:-_.. J-:l—'.—"..l -
with leading 4; in each permutation of the A, , J =1,---N+1, in the above summation.
J

Since A; appears only once in each permutation it can only lead in one and only one permutation, in this case
A;AZ. In all other permutations A; will occupy positions 2, 3, ... up the last position n + 1. So the above
expression for Q.. ([2(n +1) — 1]R)

is the same as:
> A A . proving that
Q.([2k —1]R) = ZJ{B_ +o- A, . So. the first part of (iii} is proved

(1t JE P'.:'._l 3 ke

k-1
To prove the second part, notethat >  AJAA;™" is the sum of the permutations of A, and A,
r=0

which A; appears once and A, appears k — 1 times in each permutation.
In the first permutation, corresponding to r = 0, A; occupies the first postion (A; leads), ..., in the last

permutation, corresponding to r = k - 1, A; occupies the last position (A; trails).
the term under the summation represents the permutation in which A, occupies the (r +1)* position.

Thus
(iv) Consider Q, ([2k —2]h), for k =1; this yields Q,(0) = A, (by lemma 2.5).

Let us look at the right-hand side of (iv) in lemma 1.6.
If k=1 and j=2k-2,then > A..A = D A =0by thesummationinfeasibility.

(Va1 ) €Py(2) 2(1) V1€ Py2) 2(1)

Now > A.A = DA =A, fork=1.S0,(iv)is valid fork =1.

(V1r-Vi ) €Po(1), 2(k-1) V1€ Po(y)

Assume the validity of (iv) for 1 < k < n for some integer n. Then
'?n+1.':':[2ﬂ + 1] - 2:]&:] = I:Pi'!+1.':2'n:]
= AQ,(2nh) + 4,Q,([2n — 1]R) + 4,0, ([2n — 2]R).
Qn (2nh) = A3, by (ii)

Q,([2n-1]h) = > ﬂl'--ﬂnznZ_:A;A&Az”‘l‘r, by (iii).

(V2 Vo) €y 2001
Qn-2= ¥ A=A+ Y AA,
(VY0 ) €Py(2nq2n-2)), 2(2n-2-n) (V0 ) €Po 1y, 2(n-1)
(by the induction hypothesis)
= Z A A+ Z A, -+ A, - Consequently,

(V1 Vi) €Py(2),2(n-2) (VY ) €Po 1), 2(n-1)

Q) =AA+A > A A

(VY0 ) €Py(2), 2(n-1)

tA Y AATA Y AA,

n
(Y, V) €Py(y) 2(n2) (V1,0 ) €Po1y, 2(n-1)
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= AA + Z A, -+ A, (withaleading A)

(V1 Vi ) €Po 2y, 2(n)

n Z A, ---A, , (withaleading A)

(V1 Vi) €PY(2) 2(n1)

+ Z A, ---A,_, (withaleading A)

(V. Va1 ) €Py2) 2 (0

= > AAL+ D AA,

(V1 Va1 ) €Po 1) 2(ny (V4 V1) €Py2), 2(n1)

Notice that if k=n+1and j=2(n+1)—2=2n, then 2k— j=2 and j—k =n—-1. So (iv) is proved for

K =n+1, and hence (iv) is valid . This completes the proof of the lemma.

Lemma 2.6 can be restated in an equivalent form, devoid of explicit piece-wise representation as follows:
27 Lemmaon Q (jh); je{2k—2,2k -1, --},k =1 using a composite function

For all nonnegative integers j and Kk, such that j>2k —2,k >1,

Q. (ih)
_ l: Z A, ...Avk}sgn(max{o,Zk +1-j}
(

Vi Vi) €R iy 2540
+ { > A A }sgn(max{o, 2k-1—j}.
(YR oy K
Proof: If j > 2Kk +1, both signum functions vanish, proving (i) of lemma 2.6.
If j =2k, the second signum vanishes and the first yields 1, proving (ii).
If j =2k —1, the second signum vanishes and the first yields 1, proving (iii).
If j =2k —2, both signum functions yields 1, proving (iv).

I1l. RESULTS AND DISCUSSIONS
3.1 Theoremon Q, (jh); 0< j<k,k=0

For 0< j<Kk,j, k integers, k = 0,

4]
Qh = > > A, A,

r=0 (vp, V) €Py(rakojya(j-2r)2(r)
Proof

k>1= Q. (0)= A, Q. (h) = > A, A, (bylemma2.5)

(Vo) €Pogisiyaciy

j=0=>r=0=rhs= > A A=A

(Vi) €Po(04+k-0)1(0-0),2(0)

j=1=r=0=rhs= > A A= D A

(Vi) €Po(04k-1)2(1-0)2(0) (Vi) €Poknyaq
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1=2k=2= Q,(2h) = AQ,(2h) + AQ,(h) + A,.Q,(0)

=AA +AA+AA (bylemma2.5)

j=2=re{0,3=rhs= > AA, + > AA,
(v1.V2) €Po(040-0)1(2-0),2(0) (V.V2) €Po(142-2) 12-2).201)
2
=A +AA+AA

So, the theorem is true for j €{0, 1}, k>1 and for j=2=k.
Assume that the theorem is valid for all triple pairs ], K, Qk~(]h); 1.k, Q. (jh)
for which j+k < j +k, for some j,k:k = j=3. Then

Q. (Jh) = AQ, (1) + AQ, ([J—11h) + AQ ([ —2]h)

Now, j<k+l1= j—1<kand j—2<k-1<Kk. So, we may apply the induction hypothesis to the right-
hand side of @5, ;(j*) to get:

Qua(in) = A Z A\/l"'A/k (11)

r=0 (v, Vi) €Po(rak—j)aci-2r)2(r)

&
+A D 2 A A, (12)

r=0 (Vp, Vi) €PRo(rak—(j-1)2(j-1-2r).2(r)

[

2

A ) A, A, (13)
r=0 (vp, Vi) €Ro(rak—(j-2)).1(j-2-2r),2(r)

Two cases arise: j even and j odd
Case 1:jeven. Thenj — { isodd are j — 2 is even; thus

-4 ]

The summations in (11) are all feasible, since j = 2. noting that I € {1, 2, %} .

N[—

So the right hand side of (11) can be rewritten as:

|l
)3 )3 A A (14)
r=0 (Vi Vis1) €PRo(ro(ken)-j)aci-2r)2(r)
with a leading A,
(12) can be rewritten in the form:

1,y

AS 5 A A, (15)

r=0 (Vy, Vi) €PRy(rak—(j-1pa(j--2r)2(r)

We need to incorporate% intherange of r. If I = % thenj —1—-2r=j —-1-j = -1
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Therefore, the summation Z Av1 A,k is infeasible; hence it is set equal to 0. Thus the

(o) eRy Incnad)

case I = % may be included in the expression (2.5) to yield:

AY 3 AA =Y > AAL (16)

r=0 (v, Vi) €Py(re(ke1)-j))a(i-1-2r).2(r) =0 (Vi1 Viea1) € Pora(ka)— i) i4-2r),2(r)

N

=

with a leading A
(2.3) may be rewritten in the form:
1y
2
A D 2 A A, (17)

r=0 (1, Vi) €Ro(rate(ks1)- ) a( -2(r+1)),2(r)

If r =l, then j—20r+1)= j—j—2=—2: so the summations with r = l, may be set equal to 0,
2 2
being infeasible, yielding:
J i+1
2 2
A2 2 Ao A =R D 2 AA, (18)
r=0 (V" Vic) €Ro(rsar(kat)- ) 2( j—2(r-+1)),2(r) r=L (Vi Vi) €R(raqian)-ppaci-2m)2(r-1)

(We use_zd the change of variables technique: r — r —1in the summand, r—r +1in the limits).
If »=2+1,thenj-2r=j—j—2= —2 sothe summations withr =< + 1 may be equated to 0 and dropped.

Ifr =0, then r —1=—1. Therefore the summations with
r = 0 are infeasible and hence set equal to 0. Thus (18) is the same as:

ALY > A, A, = Z > A A, (19

r=0 (Vg Vi) €Ro(ra(kan)- i) aCj-2r).2(r-0) (V1 Vi) €Rora(an)-ipaci-2r).a(r)
with a leading A, .

Therefore Q, ., (jh)

z A, ---A,_, withaleading A,
r=0 (Vl,-~~,Vk+1)ePo(r+(k+1)7j),l(j—2r),2(r)
3]
" Z A, A, withaleading A,

r=0 (Vi Viia) €Ro(ra(kan)—jyaci-2r)2(r)
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2l

+ Z A, ---A,_ . withaleading A,

r=0 (Vp, Vi) €Ro(ra(kan)—)aci-2r).2(r)

: 1
- 2 3 ARy = [Z} 2 A A,

r=0 (V. Vi) €Fors (- acj-2,2(r) r=0 (v Vi) €Ro(ri (ki) aci-2n).2(r)

N =

This concludes the proof of the theorem for j even.
Ifk=0,thenj =0since 0< j <Kk, vyielding @4(0) = I, the Nx N identity.
Case 2: jodd. Then j — fiseven, j — 2.is odd and j — 7 is even. Hence

[0 3]s a [ o] ool o 2

gain (11) is the same as:

Il
> A, A, (with aleading A) (20)

r=0 (Vi Vi) €Po(ra(kat)- j)a(j-2r).2(r)

N e

(2.5) is the same as:

1]
AY 2

r=0 (Vi Vics) €Rora(ks1)-j)a( j-1-2r),2(r) r=0 (V1 Viesr) €Po(re(ka)-j)aci-2n).2(r)

>
>
[

A A (@)

with a leading A, since r +(k +1)— j, j—1-2r and rare all nonnegative for

o [ o]

(2.7)  can be rewritten in the form:
2
A, Z A’l ...A/k
=0 (Vi) €Ro i (k) )20 j-2(r+1)) 2(r)
= A > Ay A, (22)

r=L (Ve Vi) €Po (i (k) ) A( j—21)).2(r-1)

=

1
| a—
N =

I8
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If r=0,then r—-1=-1<0. Therefore, the summations with r = 0 vanish, with (2.12) transforming to:
]
A, > A, A,
r=0 (V" Vi() €Ry(ryar (k) )a( j-2r),2(r-1)
i
4]
=3 > AcAy @)

r=1 (Vi Visa) €Ro s (k) j)acj-2r).2(r)
with leading A, .

Finally, Q, ;(Jh) =(20) + (21) + (23), the same expression in each summation, but with
leading A,, A, and A, respectively. Consequently,
i
i
Qk+l(Jh) = Z z A\/lu'p\’ku’
r=0 (Vi Vis1) €Pore(ken)- j)aci-2r)2(r)

completing the proof of the theorem for j odd. Hence the theorem has been proved for both cases; therefore, the
validity of the theorem is established.

3.2 Theoremon Q (jh); j>k =1
For j>k=>1, j, k integers,

=]

Q.(jh) = > > A, A, 1< j<2k
r=0 (V. Vi) €Ry(rya(2k—j-2r)2(r+ j-k)
0, j=2k+1
Proof
Consider Q.(jh),for j>k>1.
A if j=1
For k =1, we appeal to lemma 1.4 to obtainQ, (jh) =Q,(jh) =1 A,, if j=2
0,if j>3
Hence, Q,(jh) = A, sgn(max{0, 3— j}), j 1.
If j=1, then 2] = E; so r =0 and the rhs summation = A,.
If j = 2, then LZ_J =0: so r = 0, and the rhs summation

2k — j

. 1 .. . . .
=A,. If j=3, then <——;s0 r is infeasible = the rhs summation =0, for j > 3.

Therefore, in the stated formula, Q,(jh) = A, sgn(max{0, 3— j}), in agreement with lemma 2.5. Therefore

the theorem is valid for k =1, j >k.
Assume that the theorem is valid for 1<k <n < j, for some integer n. Then, for j >n+1,

Qu.a (1h) = AQ, (jh) + AQ, ([ -1Ih) + AQ, ([j - 2]h).
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We may apply the induction hypothesis to Q, ( jh) to get

7]
Q,(jh) = >, > A, A, since j=n.

r=0 (Vi Vi) €Ry(rya(2n-j-2r)2(r+j-n)

Now, j>n+1= j—1>n,or n< j—1. So, we may apply the induction principle to Q ([j—1]h) to get

=]
Qi-uh = > A, AL

r=0  (Vp,+Vn) €Rg(rya(2n] j-a1-2r).2(r 4 j-11-n)

where all permutations are feasible. If j—2>n,apply the induction hypothesis to Q,([j—2]h), to get

[=4]
Q.i-2h) = > 2 Ay A

r=0 (Ve +Vn) €Ro(rya(2n j-21-2r).2(r +{ j-21-n)
Hence: Qn+l ( J h)

sl vl

= A 2 2 Ay A A Y A, A,
r=0 (Vi,--Vn) €Ry(rya(2n-j-2r).2(r+j-n) r=0 (Vi) €Ry(r) 12n jaj-2r),20r [ j4]-n)
4]
2
+ A > A, A,

r=0 (Vo +Vn) €Ryryaan-qj-21-2r).2(r +[ j-2}-n)
Case: i even. Then 2n—j is even. So
1 . j o 1 . j .
—(2n- =n—=; 2n—(j—2)iseven,so || =(2n—[] -2 =n—-==n+1-
Hz( J)ﬂ 5 (J-2) {_2( [i ])ﬂ 5 J

2n—[j—1] is odd. So

1., . —1_'___:_l—
HE(Z” [ 1])ﬂ—[2(2n [i-1 1)_} n-1.

2(n+1)—j iseven; SOH% (2[n+1] - j)ﬂ =n+1 —%. Hence:
)
Qua(in = A > A, A, (24)
r=0 (Vi,--Vn) €Ryryae2n-j-2r),2¢r +j-n)
2
+ A Z A, A, (25)
r=0 (Vi) €Ro(r) 12041 j2r).2(r+ j-1-n)
n+17%
+ A Y > A, A, (26)

r=0 (Vi V) €Ro(r) 220 j-2r) 2(r + j-n+1]0)
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Use the change of variables F=r+1 in(2.14)to get
1+n—% 1+n7%
A D 2 A A=A D 2 A, A,
F=1 (Vi,""Vn) €Po(r-1)1(2n—j-2[r1).2(F-1+ j-n) r=1 (vp,"-"Vn) €Ro(r1)a(2[nl-j-2r)2(r+j-Ln+l)
1+n—i

=A Zz Z All"'A/na

r=0 (v,--,Vp)e F’0(r4),1(2[n+1]—j—2 r),2(r+j-[n+1])

(since the summation with r =0 is infeasible and hence equals 0).

HZ(nzl)—jﬂ
= Z A\ll ...A,M, with a leading A,. (27)

(V1 Vinaa) €Ro ()22t j2r),2(r+ jLn+])

_‘
Il
o

If we set r:n+l—%,in (25), then 2n+1-j—2r=2n+1-j-2n-2+ j=-1; sothe

summations with r=n +1—l vanish, being infeasible.Therefore (2.15) is the same expression as:

n1-d

A D 2 Ay A,
r=0 (Vi) €Ry(ry1(2n41- j-2r),2(r+ j-[n+1])
23]
_ Z A\Il . A\/ , (28)

r=0 (V- Vna) €Roeryacanias j-2r).2(r+ j-n+])

with a leading A, .
Clearly (2.16) is the same expression as:

[
> > AA, L (29)

r=0 (Vi) €Ro(rya(enia- j-2r)2(r+ j{ned)

with a leading A,.
Add up (27), (28) and (29) to obtain:

e

Quain = > 2 Ao Ay

r=0 (W Vi) €Rogry acansa-j-2n),2(r+ -n+))

Hence, the theorem is valid for all j > n+1;this completes the proof for the case j even.
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Now consider the case: j odd. Then 2n - i is odd. Therefore,

(EE) B R

2n—(j—2) is odd;so, H%(Zn—(j —Z)H :[[%(Zn—(j —2)—1)ﬂ = n+1—%(j +1)

1
1

%(Zn _ j)ﬂ - H%(zn i —1)ﬂ —n —%(j +1). Clearly, 2n—(j —1) is even:

T1 ) 1 ) 1 . 1,.
s0, _[5(2”_(1_l)ﬂ:E(Z”_(J_l)zi(z[nﬂ]_l_J):Ml_i(ﬁl)

2(n+1)— j is odd; so, [[% 2[n+1]— j)ﬂ = [[% 2[n+1]—j —1)ﬂ = n+1—%(j +1).
Hence: Qn+1(jh)
atitD)

A D A, (30)

r=0 (v, Vi) €Ry(rya(an-j-2r)2(r+j-n)

ns1-U*D
2
+ A D 2 A A, (31)
r=0 (Vi '""Vn) €Ro(r)a(2nia-jo2r).2(r+j-1-n)

n+1——( i+1)

£ h Y > A-A, (32)

(Vi) €Ro(rya(2mt- j-2r).2(r + j-{n+1]-1)

2(n+1)—j)

Note that N +1—%(j +1) = |:|:( 5 }j|, as earlier established .Therefore using the

change of variables f=r +1,in (30),we see that (30) is exactly the same expression as
n+-2(j+)

Ab z Z A/l...A/n

r=0 (v, -Vn) €Ry(r_1) 2021} j-2r).2(r+ j-[n+])

2(n+1)-j
2
= > > A, --- A, with aleading A,. (33)
r=0 (Ve Va1 €Po(rya(2rmett-j-2r),2(r+ j-[n+1])

(31) is exactly the same expression as:

]
2

r=0

> A, ---A, . with aleading A. (34)

(V12 Vinsa) €Ro(rya(arnsai-j-2r),2(r+ -]
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(32) is exactly the same expression as:

[Z(nzl)—j}
[ > } > A, ---A, . with aleading A,. (35)

r=0 (V12 Vnaa) €Poryac2inal-j—2r).2(r+j-n+1])

Add up (33), (34) and (35) to obtain:

[2(n+1)—j }
2
Quali = Y, > A AL (36)
r=0 (v, Vnua) €Ro(ryacarnil-j-2r).2(r+ j{n4l)

proving the theorem for j odd, for the contingency j -2>n.
Lastcase: j—2<n.Then J<N+2;but j>n+1,forcing j=n-+1. weinvoke theorem 3.1 to conclude that

2]

Qn+1([n+l]h) = z Z A\/lA/

r=0  (Vp,Visa) €Ro(ronua—(nsa)) a(naa-2r), 2(r)

(o

Now set j =N+1, in the expression for le( jh) , in theorem 3.2, to get

7]

Qu(n+in =¥ > AcA

r=0 (Vi) €Po(ry) a(naa-2r), 2(r)

exactly the same expression as in theorem 3.1. This completes the proof of theorem 3.2.

Remarks
The expressions for Qk ( jh) in theorems 3.1 and 3.2 coincide when j =K # 0, as should be expected.

IV. CONCLUSION

The results in this article bear eloguent testimony to the fact that we have comprehensively extended the previous single-delay
result by Ukwu (1992) together with appropriate embellishments through the unfolding of intricate inter—play of the greatest integer function
and the permutation objects in the course of deriving the expressions for the determining matrices.By using the greatest integer function
analysis, change of variables technique and deft application of mathematical induction principles we were able to obtain the structure of the
determining matrices for the double—delay control model, without which the computational investigation of Euclidean controllability would
be impossible. The mathematical icing on the cake was our deft application of the max and sgn functions and their composite function sgn
(max {.,.}) in the expressions for determining matrices. Such applications are optimal, in the sense that they obviate the need for explicit
piece—wise representations of those and many other discrete mathematical objects and some others in the continuum.
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