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ABSTRACT:  This paper derived and established the structure of determining matrices for a class of double – 

delay autonomous linear differential systems through a sequence of lemmas, theorems, corollaries and the 

exploitation of key facts about permutations. The proofs were achieved using ingenious combinations of 

summation notations, the multinomial distribution, the  greatest integer function, change of variables technique 

and compositions of signum and max functions. 

The paper has extended the results on single–delay models, with more complexity in the structure of the 

determining matrices. 
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I. INTRODUCTION 

The importance of determining matrices stems from the fact that they constitute the optimal 

instrumentality for the determination of Euclidean controllability and compactness of cores of Euclidean targets. 

See Gabasov and Kirillova (1976) and Ukwu (1992, 1996, 2013a). In sharp contrast to determining matrices, the 

use of indices of control systems on the one hand and the application of controllability Grammians on the other, 

for the investigation of  the Euclidean controllability of systems can at the very best be quite computationally 

challenging and at the  worst, mathematically intractable. Thus, determining matrices are beautiful brides for the 

interrogation of the controllability disposition of delay control systems. Also see Ukwu (2013a).                    

 

However up-to-date review of literature on this subject reveals that there is currently no result on the 

structure of determining matrices for double-delay systems. This could be attributed to the severe difficulty in 

identifying recognizable mathematical patterns needed for inductive proof of any claimed result. Thus, this 

paper makes a positive contribution to knowledge by correctly establishing the structure of such determining 

matrices in this area of acute research need. 

 

II. MATERIALS AND METHODS 

The derivation of necessary and sufficient condition for the Euclidean controllability of system (1) on 

the interval 
1

[0, ],t using determining matrices depends on  

1) obtaining workable expressions for the determining equations of the  n n  matrices   for 

1
: 0, 0, 1,j t jh k     

2) showing that = ( h),for j:  

3) where  

4) showing that 1( )Q t   is a linear combination of  

              0 1 1
( ), ( ), , ( ); 0, , ( 1) .

n
Q s Q s Q s s h n h


            

See Ukwu (2013a).  
 

Our objective is to prosecute task (i) in all ramifications. Tasks (ii) and (iii) will be prosecuted in other papers.
 

 

2.1     Identification of Work-Based Double-Delay Autonomous Control System 
We consider the double-delay autonomous control system: 

               

         

     

0 1 2
2 ; 0 (1)

, 2 , 0 , 0 (2)

x t A x t A x t h A x t h B u t t

x t t t h h
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Where 0 1 2, ,A A A are n n  constant matrices with real entries, B  is an n m  constant matrix with 

real entries. The initial function    is in   2 , 0 , nC h R , the space of continuous functions from [ 2 , 0]h   

into the real n-dimension Euclidean space, 
n

R  with norm defined by 
 

 
2 , 0

sup
t h

t 
 

 , (the sup norm). The 

control u is in the space   10, , nL t R , the space of essentially bounded measurable functions taking  0 1, t  

into 
n

R  with norm  


ess u t
t t

sup ( )
[ , ]0 1

.  

 

Any control   10, , nu L t R  will be referred to as an admissible control. For full discussion on 

the spaces 
1 and (or )p p

pC L L
, {1,2,..., }p  , see Chidume (2003 and 2007) and Royden (1988). 

2.2    Preliminaries on the Partial Derivatives 
( , )

, 0,1,

k

k

X t
k









  

Let  1
, 0,t t  . For fixed t, let  , t    satisfy the matrix differential equation:  

                                     0 1 2, , , 2 , (3)X t X t A X h t A X h t A


   


       

for 0 , , 0,1,...t t k h k      where    ;
0;

, nI t
t

X t







   

 

 See Chukwu (1992), Hale (1977) and Tadmore (1984) for properties of  ,t   . Of particular 

importance is the fact that  , t    is analytic on the 

intervals     1 1 1
1 , , 0,1,..., 1 0t j h t j h j t j h       . Any such   1 1

1 ,t j h t j h      is 

called a regular point of  ,t    . See also Analytic function (2010) for a discussion on analytic functions. 

Let 
   ,
k

t  denote  1
,

k

k
t




 
  , the 

thk  partial derivative of  1,t  with respect to , where   is in 

  1 1
1 , ; 0,1,...,t j h t j h j r    , for some integer r such that  t r h1 1 0   .  

Write
     1

1 1, ,
k kt t


 




   . 

Define:   

             1 1 1 1 1 1 1

1

, , , , , (4)

for  0,1,...; 0,1,...; 0,

k k k
t jh t t t j h t t j h t

k j t jh

 
      

   

  

 where 
    1 1

,
k

X t j h t


  and 
    1 1 1

, ,
k

X t t j h t


  denote respectively the left and right hand 

limits of 
   1,
k

X t  at   t j h1 .  Hence: 

     

 
  ( )

1 1

1

1 1

1

( 1)

( ) (5), lim ,k
k

X
t jh

t j h t jh

X t jh t t
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1

1

1 1

( )
1 1

( 1)

,lim( ) , (6)
k

k X
t jh

t jh t j h

tX t jh t






 

    

     

 

2.3      Definition, Existence and Uniqueness of Determining Matrices for System (1) 

Let Q k (s) be then n n  matrix function defined by:  

                                      
       0 1 1 1 2 1 2 (7)k k k kQ s A Q s AQ s h A Q s h        

for  1,2, ; 0,k s   with initial conditions:  

                                                      0 0 (8)nQ I  

                                                              0
0; 0 (9)Q s s   

These initial conditions guarantee the unique solvability of (7). Cf. [1].  

The stage is now set for the establishment of the expressions and the structure of the determining matrices for 

system (1), as well as their relationships with 
( ) ( , )kX t   through a sequence of lemmas, theorems and 

corollaries and the exploitation of key facts about permutations. 

2.4     Lemma on permutation products and sums 

Let 0 1 2, ,r r r  be nonnegative integers and let 
   0 1 20 ,1 ,2( )r r r

P  denote the set of all permutations of 

  
10 2

timestimes times

the permutations of the objects 0,1, and 2 in which0,0,...0 1,1,...1 2, 2,...2 :  appears times, 0,1, 2 .
i

rr r

i r i 

 

   0 1 20 ,1 ,2( )
Let

iL

r r r
P denote the subset of    0 1 20 ,1 ,2( )r r r

P with leading i , that is, those with i occupying the first 

position.    0 1 20 ,1 ,2( )
Let

iT

r r r
P denote the subset of    0 1 20 ,1 ,2( )r r r

P with trailing i , that is, those with i occupying the 

last position. Set 0 1 2.r r r r  
 
Then for any fixed 0 1 2, , ,r r r  

 
              

1 1

1 10 , 1 ,1 0 , 1 ,10 1 2 0 1 2

2 2

0 1 2 0 1 2
,... ,...0 0

a ..., ( , , ) ..., ( , , )
  

    r riL
r rr r r r r r

iL

v v r v v r
v v P v v Pi i

A A S r r r A A S r r r  

               

 
   

1 1 1 1

1 1 1 10 max 0, 1 , 1 ,1 0( ) , 1 max 0, 1 ,10 1 2 0 1 2

1 1

1 1
0( ) , 1 , 2 max 0, 10 1 2

0 0 1 1
,... ,...

22
,...

..., sgn( ) ..., sgn( )

sgn( )...,

 

  

 
 
 






 



   
     
   
   

 
 
 
  



r r

r rr r r r r r

r

r
r r r

v v v v
v v P v v P

v v
v v P

A A A r A A A r

rA A A

 

 
              

1 1

1 10 , 1 ,1 0 , 1 ,10 1 2 0 1 2

2 2

0 1 2 0 1 2
,... ,...0 0

b ..., ( , , ) ..., ( , , )
  

    r riT
r rr r r r r r

iT

v v r v v r
v v P v v Pi i

A A S r r r A A S r r r  

               

 
   

1 1 1 1

1 1 1 10 max 0, 1 , 1 ,1 0( ) , 1 max 0, 1 ,10 1 2 0 1 2

1 1

1 1
0( ) , 1 , 2 max 0, 10 1 2

0 0 1 1
,... ,...

2 2
,...

..., sgn( ) ..., sgn( )

sgn( )...,

 

  

 
 
 






 



   
     
   
   

 
 
 
  



r r

r rr r r r r r

r

r
r r r

v v v v
v v P v v P

v v
v v P

A A A r A A A r

A rA A

 

(c) Hence for all nonnegative integers 0 1 2, ,r r r  such that 0 1 2 ,r r r r    
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0 1 2

1 1

1 10 , 1 ,1 0 , 1 ,10 1 2 0 1 2

0 1 2 0 1 2

2

0 1 2

0

2

0 1 2
,... ,...0

( , , )

..., ( , , ) ...,

  

   

 

  



  

 

r r
iL

r rr r r r r r

r r r r

iL

r

i r r r r

v v r v v
v v P v v Pi

r r r r

S r r r

A A S r r r A A

 

Similar statements hold with respect to the remaining relations.  Note that 

         

0

1

10 1 0 , 1 , 20 1 2

1

1 0 , 1 , 20 1 2

0 1 2

2

,...0 0 0

2

0 ,...

...,...,
     
     
     
  



   

  r
iL

r r r r

r
iL

r
r r r

r r r r

r rr

v v
v v Pi r r

v v
i v v P

A AA A  

sgn( )ir ensures that the corresponding expression vanishes if 0i ir A  does not appear and so cannot be 

factored out. max{0, 1}ir   ensures that the resulting permutations are well-defined. 

In order not to clutter the work with ‘ max{0, 1}ir  ’ and ‘ sgn( )ir ’, the standard convention of letting 

       
1

1 0 , 1 ,10 1 2

0 1 2 0 1 2
,...

..., 0, for any fixed , , ; : 0, for some {0,1,2}
r

r r r r

v v i
v v P

A A r r r r r r r r i


     
  

        

would be adopted, as needed. 

Proofs of (a), (b) and (c) 

Every permutation involving 0, 1, and 2 must be led by one of those objects. If 0, 1 and 2 appear at least once, 

then each of them must lead at least once. Equivalent statements hold with ‘led’ replaced by ‘trailed’ and ‘lead’ 

replaced by ‘trail’. Hence the sum of the products of the permutations must be the sum of the products of those 

permutations led (trailed) by 0 1 2, , and respectively.A A A Consequently, 

       

0 0

1

0 1 0 1

0

0 1

1 0 , 1 , 20 1 0 1

0 1 2

0 1 0 1

0 0 0 0

2

0 1 0 1

0 0 0

,...

restricted to those permutations with leading(trailing )

..., ( , , )

( , , )

r

i

r r r r r r

r r r r

r r r rr r

v v r

r r r r

r rr

r

i r r

v v P

A

A A S r r r r r

S r r r r r

 

  

 

   



  



  

 
   

 
 

 

   

   

 

   

 

0 1 0 1 2 0 1 1 0 1 2 1

2 1 0 1 2 2

1 0 1 2 0 0 1 0 1 2 1 1

1 0 1 2 2 2

(max 0, 1 , , ) sgn( ) ( , max 0, 1 , ) sgn( )

( , , max 0, 1 ) sgn( )

(max 0, 1 , , ) sgn( ) ( , max 0, 1 , ) sgn( )

( , , max 0, 1 ) sgn( )

r r

r

r r

r

A S r r r r A S r r r r

A S r r r r

S r r r A r S r r r A r

S r r r A r

 



 



   

 

   

 

 

 

2.5 Preliminary Lemma on Determining Matrices  ( ),kQ s sR           

(i)  

(ii)  

(iii)  

(iv)  

(v) 1( ) sgn(max{0, 3 }), 0.jQ jh A j j                                           

(vi)  
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(vii)  

(viii) 1 1

, if 0
( , )

0, otherwise

nI j
X t jh t


   


 

Proof 

(i)  

  

Then,  

 
We need to prove that   

Assertion:  

Proof:    

                                                                                                       

So the assertion is true for k = 1.  

Assume that  for some integer n. Then 

 
 ,  

by the induction hypothesis, since   

Therefore,  Hence   proving that 

 
 (ii) Let k = 1 and let s  for any integer r. Then 

  

, since s   

  Assume for some integer . Then  

 

 
by the induction hypothesis. Hence for any integer r 

(iii) This has already been proved. 

(iv)  by the definition of  

  

 

1

1 0 1 1 ,1(1)

.v
v P

A




    So (iv) is true for k = 1. 

Assume (iv) is true for  for some integer . Then 

 

by the induction hypothesis.  

 

Therefore,  

       
 

                     
1 1

1 1 0( 1 1),1(1)( , , )
n

n n

v v

v v P

A A


  

 



1 1

1 1 0( 1 1),1(1)( , , )
n

n n

v v

v v P

A A


  

 


  

So (iv) is true for . 

(v)    by (i) and (ii) respectively 

  

  

       For  
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       Now  

         (by the definition of ), proving (v). 

 (vi)  

For k = l, this yields 

  

 
Therefore  . Note that for  sufficiently, close to  

 

 

 

 
        

Assume that  for ,3 nk  for some integer n. 

Then
         011111

1 ,,, AttXtXttX n

t

nn 



 











 




  

      211111

)( ,)2(,) AthtXAthtX nn  

   

   2100 0011 AAAAnn
   1

0

1
1 

 nn
A . 

Therefore 
     ,1, 011

kkk AttX 
proving (vi) 

 (vii)  
       , 11 


ttX k

 
lim

11 htt 
   ,0, 1 tX k 

 
since 

1
t  . Therefore

( )

1 1( , ) 0kX t t  , proving  

(viii)         ,,2,,, 2111011 AthXAthXAtXtX 






 

            for  , where  

Let  j  be a non-negative number such that . 

Then we integrate the system (3), apply the above initial matrix function condition and the fundamental theorem 

of calculus, (F.T.C.) to get: 

                    (by the F.T.C.) 

                       

Similarly, 
+
,

 
)  

 

Therefore,   

 
since  is bounded and integrable (being of bounded 

variation) and the fact that   

for any bounded integrable function, f. Therefore  

For  we have  completing the proof of (viii). See 

Bounded variation (2012) for detailed discussion on functions of bounded variation. 

   

2.6 Lemma on ( ); {2 2, 2 1, }, 1
k

Q jh j k k k     

For  
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Proof 

Note that the first summations in (iv), yield   

   

k

kk

vv

vv

AA
p




1

22,211 ),,(


  

)]12([)2()]12([)]12([ 121110 hkQAkhQAhkQAhkQ kkkk  
 

 by lemma 1.4. Clearly  for  

So the lemma is valid for  when  

Assume that the lemma is valid for for every integer, k such that  

. Then 

    
  hnQn 12                                   (10) 

                      (by the induction hypothesis), since 

 

 
Equivalently, on the right-hand side of (1.10) set 

in the first term;  

 Then clearly k <  n  and   j  > 2 k + 1 

Hence the induction hypothesis applies to the right-hand side of (1.10), yielding 0 in each term and consequently 

0 for the sum of the terms.    012,Therefore  hnQn
 

For any ,  

Now   and .   

Hence   Combine this with the case to conclude that  

proving that   as required in (i) of lemma 2.5. 

(ii) Consider  this yields by lemma 1.5. 

             So (ii) is valid for k =1.  

Assume the validity of (ii) for  for some integer n. Then 

       
  hnQn 121   

and of  lemma 2.5, and 

. 

by the induction hypothesis; therefore,   

        and Hence , , proving  

(iii)     For k = 1,  by lemma 1.5 . 

Now  
1 1

1 11(1),2( 1) 1(1)

1

( , , )

, for 1.
k

k k

v v v
v v P v P

kA A A A
 

  


   So (iii) is valid for k = 1 

Assume the validity of (iii) for 1 < k < n, for some integer n. Then 

=  

 
Now ,  

  

Therefore,  



The structure of determining matrices for a class of… 

www.ijmsi.org                                               21 | P a g e  

  

 

with leading in each permutation of the ,1,1,  njA sv j
 in the above summation. 

Since appears only once in each permutation it can only lead in one and only one permutation, in this case 

In all other permutations  will occupy positions 2, 3, … up the last position  So the above 

expression for  

is the same as: 

proving that  

   that  note part, second  theprove To 1

21

1

0

2

rk
k

r

r AAA 





 

is the sum of the permutations of

 
21  and AA

  

which  A1 appears once and A2  appears  k – 1 times in each permutation. 

In the first permutation, corresponding to r = 0, A1 occupies the first postion (A1 leads), …, in the last 

permutation, corresponding to r = k – 1, A1 occupies the last position (A1 trails). 

Thus

st

1
the term under the summation represents the permutation in which  occupies the ( 1) position.A r 

  

 

1 0
(iv)  Consider ([2 2] ),  for  1;  this yields (0) (by lemma 2.5).

k
Q k h k Q A    

Let us look at the right-hand side of (iv) in lemma 1.6. 

       

ity.infeasibilsummation  by the,0...then ,22 and,1  If
12,211

1

12,211

1

)...,,(

 
  Pv

vv

Pvv

v AAAkjk
k

k

     

.1for   validis (iv) So, .1for ,... Now 0

)...,,( 101

1

12,101

1
 

 

kkAAAA
Pv

vv

Pvv

v k

kk
 

Assume the validity of (iv) for 1 < k < n for some integer n. Then 

 

 
 ( ) = , by (ii) 

                

1

1 1(1), 2( 1)

1
1

2 1 2

( , , ) 0

([2 1] ) ,    by  (iii).
n

n n

n
r n r

n v v

v v P r

Q n h A A A A A



 

 

   


  

                 
1 1

1 1( 2 [ 2 2]), 2( 2 2 ) 1 0(1), 2( 1)( , , ) ( , , )

([2 2] ) ,

(by the induction hypothesis)

n n

n n n n n n n

n v v v v

v v P v v P

Q n h A A A A
     

   
 

 
  

   
1 1

1 1(2), 2( 2) 1 0(1), 2( 1)( , , ) ( , , )

.
n n

n n n n

v v v v

v v P v v P

A A A A
  

  
 

   Consequently, 

               

1

1 1( 2), 2( 1)

1 1

1 1(1), 2( 2) 1 0(1), 2( 1)

1 0 2 1

( , , )

2 2

( , , ) ( , , )

 (2 )

.

n

n n

n n

n n n n

n

n v v

v v P

v v v v

v v P v v P

Q nh A A A A A

A A A A A A
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1 1

1 1 0(1), 2( )

1 1

1 1 1(2), 2( 1)

2

1

0 2

( , , )

( , , )

 (with a leading )

(with a leading )

 

  

n

n n

n

n n

n

v v

v v P

v v

v v P

A

A

A A A A

A A







 





 














 

                               
21 1

1 1 1(2), 2( 1)( , , )

(with a leading ) 
n

n n

v v

v v P

AA A


 

 


  

                                  
1 1 1 1

1 1 0(1), 2( ) 1 1 1(2), 2( 1)( , , ) ( , , )

   
n n

n n n n

v v v v

v v P v v P

A A A A
 

   

  
 

   

 

Notice that if 1 and  2( 1) 2 2 , then 2 2 and  1.k n j n n k j j k n            So (iv) is proved for 

1k n  , and hence (iv) is valid . This completes the proof of the lemma. 

Lemma 2.6 can be restated in an equivalent form, devoid of explicit piece-wise representation as follows: 

2.7     Lemma on ( ); {2 2, 2 1, }, 1
k

Q jh j k k k    using a composite function 

For all nonnegative integers and  ,j k such that 2 2, 1,j k k    

1

1 1(2 ), 2( )( , , )

( )

sgn(max{0,2 1 })
k

k k j j k

k

v v

v v P

Q jh

A A k j
 

 
   

  






 

                                     

.

( , , )
1 0(1),2( 1)

1
sgn(max{0, 2 1 })

v v P
k k

kv vA A k j




 
  

  

 


  

Proof: If 2 1j k  , both signum functions vanish, proving (i) of lemma 2.6. 

If 2j k , the second signum vanishes and the first yields 1, proving (ii). 

If 2 1j k  , the second signum vanishes and the first yields 1, proving (iii). 

If 2 2j k  , both signum functions yields 1, proving (iv). 

III. RESULTS AND DISCUSSIONS 

3.1 Theorem on ( ); 0 , 0
k

Q jh j k k     

 

                                 

1

1 0( ),1( 2 ),2( )

2

0 ( , , )

For 0 , ,  integers, 0,

( )
k

k r k j j r r

k

j

v v

r v v P

j k j k k

Q jh A A
  

  
  
  

 

  

  



 

Proof 

1

1 0( ),1( )

1

1 0(0 0),1(0 0),2(0)

1 1

1 0(0 1),1(1 0),2(0) 1 0( 1),1(1

0

( , , )

0

( , , )

( , , ) ( , , )

(by lemma 2.5)1 (0) , ( ) ,

0 0 rhs

1 0 rhs

k

k k j j

k

k k

k k

k k k k

k

k k v v

v v P

k

v v

v v P

v v v v

v v P v v P

k Q A Q h A A

j r A A A

j r A A A A



  

   





 

   

     

     











 





 
)
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1 2 1 2

1 2 1 20(0 0 0),1(2 0),2(0) 0(1 2 2).1(2 2),2(1)

2 0 1 1 1 2 1

0 2 1 1 2 0

2

1 0 2 2 0

( , ) ( , )

2, 2 (2 ) (2 ) ( ) (0)

(by lemma 2.5 )

2 {0,1} rhs v v v v

v v P v v P

j k Q h A Q h AQ h A Q

A A A A A A

j r A A A A

A A A A A

      

     

  

     

  

 

 

 
So, the theorem is true for  {0, 1}, 1 and for 2 .j k j k     

Assume that the theorem is valid for all triple pairs , , ( ); , , ( )
kk

j k Q jh j k Q jh
   

 for which , for some , : 3.j k j k j k k j       Then  

1 0 1 2( ) ( ) ([ 1] ) ([ 2] )k k k kQ jh A Q jh A Q j h A Q j h       

Now, 1 1  and 2 1 .j k j k j k k          So, we may apply the induction hypothesis to the right-

hand side of (  to get:  

                     

1

1 0( ),1( 2 ),2( )

1

1 0( ( 1)),1( 1 2 ),2( )

1

1 0( ( 2)),1( 2 2 ),2( )

2

01
0 ( , , )

1

2

1
0 ( , , )

2
0 ( , , )

( ) (11)

(12)

k

k r k j j r r

k

k r k j j r r

k r k j j r r

j

v vk
r v v P

j

v v
r v v P

j

v
r v v P

Q jh A A A

A A A

A A

  

    

    

  
  
   

  
  
   


 



 



 







 

 













2

2

(13)
kvA

  
  
   

 

 

Two cases arise:  even and  odd  

Case 1: even. Then  is odd are  is even; thus  

                                  

1 2
1 and

2 2 2 2 2

j j j j j            
             

          
 

The summations in (11) are all feasible, since  noting that 1, 2, ,
2

j
r

 
 
 

  . 

So the right hand side of (11) can be rewritten as: 

                              

1

1 1 0( ( 1) ),1( 2 ),2 ( )

0

2

0 ( , , )

with a leading 

, (14)
k

k r k j j r r

j

v v

r v v P

A

A A
    

  
  
  

 

 




 
(12) can be rewritten in the form: 

                             

1

1 0( ( 1)),1( 1 2 ),2( )

1
2

1

0 ( , , )

(15)
k

k r k j j r r

j

v v

r v v P

A A A
    



 

 


  

We need to incorporate
2

j
 in the range of r. If 

2

j
r  , then  
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Therefore, the summation 
1

1
0( 1 )),1( 1),2( )

2 2

( , , )
k

k j j
k

v v

v v P

A A

  





  is infeasible; hence it is set equal to 0. Thus the 

case 
2

j
r   may be included in the expression (2.5) to yield:  

1 1 1

1

1 10( ( 1) )),1( 1 2 ),2( ) 1 0( ( 1) )),1( 1 2 ),2( )

2 2

1

0 0( , , ) ( , , )

with a leading 

, (16)
k k

k r k j j r r k r k j j r r

j j

v v v v

r rv v P v v P

A

A A A A A


            

   
 

 

 

(2.3) may be rewritten in the form: 

                                

1

1 0( 1 ( 1) )),1( 2( 1)),2( )

1
2

2

0 ( , , )

(17)
k

k r k j j r r

j

v v

r v v P

A A A
     



 
 



  

If  ,
2

j
r    then   so the summations with   ,

2

j
r   may be set equal to 0, 

being infeasible, yielding:  

     

1 1

1 10( 1 ( 1) )),1( 2( 1)),2( ) 0( ( 1) )),1( 2 )),2( 1)

1
2 2

2 2

0 1( , , ) ( , , )

(18)
k k

k r k j j r r k r k j j r r

j j

v v v v

r rv v P v v P

A A A A A A
          



  

   
 

 

 

 (We used the change of variables technique: 1r r  in the summand, 1r r  in the limits). 

If   + 1, then  -2r =   so the summations with r =  + 1 may be equated to 0 and dropped. 

If r = 0, then 1 1r   . Therefore the summations with  

r = 0 are infeasible and hence set equal to 0. Thus (18) is the same as: 

2

1 1

2 2

2

0 01 10( ( 1) )),1( 2 )),2( 1) 0( ( 1) )),1( 2 )),2( )( , , ) ( , , )

with a leading .

, (19)
k k

j j

v v v v

r rk r k j j r r k r k j j r rv v P v v P

A

A A A A A
          

   
 

 

 

Therefore   1( )kQ jh  

                       

1 1

2

0

0 1 1 0( ( 1) ),1( 2 ),2( )( , , )

, with a leading 
k

j

v v

r k r k j j r rv v P

A A A


  
  
  

     

  


  

                   

1 1

2

1

0 1 1 0( ( 1) ),1( 2 ),2( )( , , )

, with a leading 
k

j

v v

r k r k j j r rv v P

A A A
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1 1

2

2

0 1 1 0( ( 1) ),1( 2 ),2( )( , , )

, with a leading 
k

j

v v

r k r k j j r rv v P

A A A


  
  
  

     

  




                       

         

1 1 1 1

22

0 01 11 0( ( 1) ),1( 2 ),2( ) 1 0( ( 1) ),1( 2 ),2( )( , , ) ( , , )
k k

jj

v v v v

r rk r k j j r r k r k j j r rv v P v v P

A A A A
 

  
  
  

           

    
 

 
 

This concludes the proof of the theorem for  even. 

If k = 0, then  since 0 ,j k   yielding (0) =  the n n  identity. 

Case 2: j odd. Then  is even,  is odd and  is even. Hence  

1 1 1 1 1 1 1
( 1) ( 1) , and ( 2) ( 3) ( 3) 1

2 2 2 2 2 2 2
j j j j j j j

                  
                            

                   A

gain (11) is the same as: 

      

2

0

0
1 1

1 1 0( ( 1) ),1( 2 ),2( )( , , )

, (with a leading ) (20)

j

r
k

k r k j j r r

v v
v v P

A A A

  
  
  




    
 





 

(2.5) is the same as:                           

  

1 1

1

1

2 2

1

0 01 11 0( ( 1) ),1( 1 2 ),2( ) 1 0( ( 1) ),1( 2 ),2( )( , , ) ( , , )

with a leading , since ( 1) , 1 2 and are all nonnegat

, (21)
k k

j j

v v v

r rk r k j j r r k r k j j r r

v
v v P v v P

A r k j j r r

A A A A A


      
      
      

            

    

   
 

 

ive for

1 1
0,1, , 0,1, , ( 1) .

2 2
r j j

         
           

         
 

 

 (2.7) can be rewritten in the form:  

1
2

2
0

2

2
1

1

1

1 0( 1 ( 1) ),1( 2( 1)),2( )

1 0( 1 ( 1) ),1( 2 )),2( 1)

( , , )

( , , )

(22)

j

r

j

r

k

k

k r k j j r r

k r k j j r r

v v

v v

v v P

v v P

A A A

A A A
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If  r = 0, then  r – 1 = -1 < 0. Therefore, the summations with r = 0 vanish, with (2.12) transforming to: 

 

2

1

1 1

2

2

0

2

1

1 0( 1 ( 1) ),1( 2 ),2( 1)

1 1 0( 1 ( 1) ),1( 2 )),2( )

( , , )

( , , )

with leading .

, (23)

    

k

k

j

r

j

r

k r k j j r r

k r k j j r r

v v

v v

v v P

v v P

A

A A A

A A


  
  
  



  
  
  



     

     







 

 









 
Finally, 1( )kQ jh = (20) + (21) + (23), the same expression in each summation, but with  

leading 0 1 2, and A A A  respectively. Consequently, 

1 1

2

1

0 1 1 0( ( 1) ),1( 2 ),2( )( , , )

( ) ,
k

j

k

r k r k j j r r

v v
v v P

Q jh A A


  
  
  



     

  


  

completing the proof of the theorem for  j  odd. Hence the theorem has been proved for both cases; therefore, the 

validity of the theorem is established. 

 

 

3.2     Theorem on ( ); 1
k

Q jh j k   

                         
1

2

2

0 1 0( ),1(2 2 ),2( )( , , )

For 1, ,  integers,

( )
, 1 2

0, 2 1

k
k

k j

r k r k j r r j k

v v
v v P

j k j k

Q jh
A A j k

j k

  
  
  

    

 





  


  

 


  

Proof 

Consider ( ) , for 1.
k

Q jh j k    

1

1

2For 1, we appeal to lemma 1.4 to obtain ( ) ( )

, if 1

, if 2

0, if 3

k
k Q jh Q jh

A j

A j

j

 




 
 

 

Hence, 
1
( ) sgn(max{0, 3 }), 1.

j
Q jh A j j    

If  j = 1, then 
2 1

2 2

k j
 ;  so  r = 0 and the rhs summation 1.A  

If   j = 2, then  
2

0
2

k j
 ; so  r = 0, and the rhs summation 

2 .A
2 1

If   3, then ;so  is infeasible the rhs summation 0, for 3.
2 2

k j
j r j


        

Therefore, in the stated formula, 1( ) sgn(max{0, 3 }),jQ jh A j  in agreement with lemma 2.5. Therefore 

the theorem is valid for 1, .k j k   

Assume that the theorem is valid for  1 , for some integer . Then, for  1,k n j n j n      

1 0 1 2( ) ( ) ([ 1] ) ([ 2] ).n n n nQ jh A Q jh A Q j h A Q j h       
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We may apply the induction hypothesis to ( )nQ jh to get 

                               

1

2

2

0 1 0( ),1(2 2 ),2( )( , , )

since .( ) ,

n j

n

r
n

n r n j r r j n

v v
v v P

j nQ jh A A

  
  
  

    

  


  

Now, 1 1 , or 1.j n j n n j        So, we may apply the induction principle to ([ 1] )
n

Q j h  to get   

2 [ 1]

2

0
1

1 0( ),1(2 [ 1] 2 ),2( [ 1] )( , , )

([ 1] ) ,
n

n j

r
n

n r n j r r j n

v v
v v P

Q j h A A

   
  
  

      

   


  

where all permutations are feasible. If  2 ,j n  apply the induction hypothesis to ([ 2] )
n

Q j h , to get 

2 [ 2]

2

0
1

1 0( ),1(2 [ 2] 2 ),2( [ 2] )( , , )

([ 2] ) .

n j

n

r
n

n r n j r r j n

v v
v v P

Q j h A A

   
  
  

      

   


  

Hence, 1( )nQ jh  

                             
2 2 [ 1]

2 2

0 1

0 0
1 1

1 10( ),1(2 2 ),2( ) 0( ),1(2 [ 1] 2 ),2( [ 1] )( , , ) ( , , )

n j n j

r r
n n

n nr n j r r j n r n j r r j n

v v v v
v v P v v P

A A A A A A

        
      
      

           

    
 

 

 

 

       
1

2 [ 2]

2

2

0 1 0( ),1(2 [ 2] 2 ),2( [ 2] )( , , )
n

n j

v v

r n r n j r r j nv v P

A A A

   
  
  

      

  


  

 

Case:  j  even. Then 2n j  is even. So 

1 1
(2 ) ; 2 ( 2) is even,so (2 [ 2]) 1

2 2 2 2

j j
n j n n j n j n n j

      
                 

      
 

2 [ 1]n j   is odd. So 

             
1 1

(2 [ 1]) (2 [ 1] 1) .
2 2 2

j
n j n j n

      
             

      
 

1
2( 1) is even; so (2[ 1] ) 1 .

2 2

j
n j n j n

  
        

  
 Hence:

 

1

1 0( ),1(2 2 ),2( )

2

1 0
0 ( , , )

(24)( )
n

n r n j r r j n

j
n

v vn
r v v P

Q jh A A A
   




 

  


  

1

2

1
0

1 0( ),1(2 1 2 ),2( 1 )( , , )

(25)
n

j
n

v v
r n r n j r r j nv v P

A A A




     

  


  

                       

1

1
2

2
0

1 0( ),1(2[ 1] 2 ),2( [ 1] 1)( , , )

(26)
n

j
n

v v
r n r n j r r j nv v P

A A A
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Use the change of variables 1, in (2.14) to getr r 

     
1 1

1 10( 1),1(2 2[ 1]),2( 1 ) 0( 1),1(2[ 1] 2 ),2( [ 1])

1

1 0( 1),1(2[ 1] 2 ),2( [ 1])

1 1
2 2

0 0
1 ( , , ) 1 ( , , )

1
2

0
0 ( , , )

,

n n

n nr n j r r j n r n j r r j n

n

n r n j r r j n

j j
n n

v v v v
r v v P r v v P

j
n

v v
r v v P

A A A A A A

A A A

             

      

   

   

 

 





   

 

    



 



 
                             

(since the summation with 0r   is infeasible and hence equals 0).
 

            

1 1 0

1 1 0( ),1(2[ 1] 2 ),2( [ 1])

2( 1)

2

0 ( , , )

with a leading . (27),
n

n r n j r r j n

n j

v v
r v v P

AA A


  
  
   

      

 

 

  


  

 
 

If we set  1 ,in (25), then
2

j
r n    2 1 2 2 1 2 2 1;  so the n j r n j n j            

Therefore (2.15) is the same expression as:summations with  1 vanish, being infeasible.
2

j
r n  

 
    

1
2

1

0

2( 1)

2

0

1

1 0( ),1(2 1 2 ),2( [ 1])

1 1

1 1 0( ),1(2 1 2 ),2( [ 1])

( , , )

( , , )

, (28)

j
n

r

n j

r

n

n r n j r r j n

n

n r n j r r j n

v v
v v P

v v
v v P

A A A

A A

 



   
  
  



     



      







 

 








 

with a leading 1A .  

Clearly (2.16) is the same expression as:
 

                                 

               
1 1

1 1 0( ),1(2 1 2 ),2( [ 1])

2( 1)
2

0 ( , , )

, (29)
n

n r n j r r j n

n j

v v
r v v P

A A

  
  
    



      

 

 
 



  

 

with a leading 2.A   

Add up (27), (28) and (29) to obtain:  

                     
1 1

1 1 0( ),1(2 1 2 ),2( [ 1])

2( 1)
2

1
0 ( , , )

( ) .
n

n r n j r r j n

n j

v vn
r v v P

Q jh A A

  
  
    



      

 


 

  


  

 

Hence, the theorem is valid for all 1;j n  this completes the proof for the case  j  even. 
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Now consider the case: j odd. Then 2n –  is odd. Therefore,          

    

1 1 1
(2 ) (2 1) ( 1),

2 2 2

1 1 1
2 ( 2) is odd;so, (2 ( 2) (2 ( 2) 1) 1 ( 1)

2 2 2

n j n j n j

n j n j n j n j

      
            

      

      
                 

      

    

        

    

1 1 1
(2 ) (2 1) ( 1). Clearly, 2 ( 1) is even;

2 2 2

1 1 1 1
so, (2 ( 1) (2 ( 1) (2[ 1] 1 ) 1 ( 1)

2 2 2 2

n j n j n j n j

n j n j n j n j

      
              

      

  
              

  

 

       

1 1 1
2( 1) is odd; so, (2[ 1] ) (2[ 1] 1) 1 ( 1).

2 2 2
n j n j n j n j

      
                 

        
 

Hence:
 1( )nQ jh  

                          
1

1 0( ),1(2 2 ),2( )

( 1)

2

0
0 ( , , )

(30)
n

n r n j r r j n

j
n

v v
r v v P

A A A
   




 

  


  

 

                                  1

1 0( ),1(2 1 2 ),2( 1 )

( 1)
1

2

1
0 ( , , )

(31)
n

n r n j r r j n

j
n

v v
r v v P

A A A
     


 

 

  



 

                          

                                
1

1 0( ),1(2[ 1] 2 ),2( [ 1] 1)

( 1)
1

2

2
0 ( , , )

(32)
n

n r n j r r j n

j
n

v v
r v v P

A A A
      


 

 

  


  

 

Note that 
 

as earlier established
2( 1)1

1 ( 1) ,  
2 2

n j
n j

   
      

   

.Therefore using the  

 

change of variables 1r r  ,in (30),we see that (30) is exactly the same expression as 

0

1

1 0( 1),1(2[ 1] 2 ),2( [ 1])

1 1

1 1 0( ),1(2[ 1] 2 ),2( [ 1])

1
1 ( 1)

2

0
0 ( , , )

2( 1)
2

0 ( , , )

with a leading . (33),

n

n r n j r r j n

n

n r n j r r j n

n j

v v
r v v P

n j

v v
r v v P

A

A A A

A A

  
  
    

      



      

  

 

 

 



 

 









 

(31) is exactly the same expression as: 

 

     

1 1

1 1 0( ),1(2[ 1] 2 ),2( [ 1])

1

2( 1)

2

0 ( , , )

with a leading ., (34)
n

n r n j r r j n

n j

v v
r v v P

AA A
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(32) is exactly the same expression as: 

       

1 1

1 1 0( ),1(2[ 1] 2 ),2( [ 1])

2

2( 1)

2

0 ( , , )

with a leading ., (35)
n

n r n j r r j n

n j

v v
r v v P

AA A


      

  
  
   

 

 
 





 

 Add up (33), (34) and (35) to obtain:
 

 

     

1 1

1 1 0( ),1(2[ 1] 2 ),2( [ 1])

2( 1)

2

1
0 ( , , )

( ) , (36)
n

n r n j r r j n

n j

v vn
r v v P

Q jh A A


      

  
  
   

 


 

  


  

 

proving the theorem for  j  odd, for the contingency 2 .j n   

Last case:  – 2 <  n . Then 2;but 1,forcing 1.j n j n j n       We invoke theorem 3.1 to conclude that 

                             

1 1

1 1 0( 1 ( 1)),1( 1 2 ),2( )

1)
2

1
0 ( , , )

([ 1] ) .
n

n r n n n r r

n

v vn
r v v P

Q n h A A

  
  
    



      




 

   


  

 

Now set 1j n  , in the expression for 1( )nQ jh , in theorem 3.2, to get 

1 1

1 1 0( )),1( 1 2 ),2( )

1)
2

1
0 ( , , )

([ 1] ) ,
n

n r n r r

n

v vn
r v v P

Q n h A A

  
  
    



  




 

   



 

 
exactly the same expression as in theorem 3.1. This completes the proof of theorem 3.2.  
 

Remarks 

The expressions for ( )kQ jh in theorems 3.1 and 3.2 coincide when 0,j k  as should be expected. 

 

IV. CONCLUSION 
The results in this article bear eloquent testimony to the fact that we have comprehensively extended the previous single-delay 

result by Ukwu (1992) together with appropriate embellishments through the unfolding of intricate inter–play of the greatest integer function 

and the permutation objects in the course of deriving the expressions for the determining matrices.By using the greatest integer function 

analysis, change of variables technique and deft application of mathematical induction principles we were able to obtain the structure of the 
determining matrices for the double–delay control model, without which the computational investigation of Euclidean controllability would 

be impossible. The mathematical icing on the cake was our deft application of the max and sgn functions and their composite function sgn 

(max {.,.}) in the expressions for determining matrices. Such applications are optimal, in the sense that they obviate the need for explicit 
piece–wise representations of those and many other discrete mathematical objects and some others in the continuum.  
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