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ABSTRACT: This article examined interior-point methods for solving linear programming problems. Then it 

collected key relevant results, formulated analogous continuous dynamical systems, pioneered the introduction 

of cores of targets concept and established a sequence of lemmas which would be invoked to prove that the 

system’s trajectories converge to the optimal solution of a linear programming problem in standard form, under  

appropriate conditions.These results were made possible by the exploitation of norm properties, their 

derivatives and the theory of ordinary differential equations, paving the way for the pursuits of solutions of 

some linear optimization problems that may not require exact optimal solutions but particular solutions at 

specified tolerance levels, within feasible guidelines or constraints. 
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I. INTRODUCTION AND MOTIVATION 
The application of linear programming to business, management, engineering and structured decision 

processes has been quite remarkable. Since the development of the simplex method in 1947 by G.B. Dantzing, 

there has been a flurry of research activities in the designing of solution methods for linear programming, 

mostly aimed at realizing more effective and efficient algorithmic computer implementations and computing 

complexity reductions.  

In the Fall of 1984, Karmarkar [1] of AT & Bell Laboratories proposed a new polynomial-time 

algorithm for solving linear optimization problems. The new algorithm not only possesses better complexity 

than the Simplex method in the worst-case scenario, but also shows the potential to rival the Simplex algorithm 

for large-scale, real-world applications. This development quickly captured the attention of Operations Research 

community. Radically different from the Simplex method, Karmarkar’s original algorithm considers a linear 

programming problem over a simplex structure and moves through the interior of the polytope of feasible 

domain by transforming the space at each step to place the current solution at the center of the polytope in the 

transformed space. Then the solution is moved in the direction of projected steepest descent far enough to avoid 

the boundary of the feasible region in order to remain interior. Then the inverse transformation of the improved 

solution is taken to map it back to the original space to obtain a new interior solution. The process is repeated 

until an optimum is obtained with a desired level of accuracy. 

     Karmarkar’s standard form for linear programming can be described as follows: 

 
1

min

. . 0

1

0

(1)

T

T

c x

s t Ax
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e x
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where A is an  m n  matrix of full row rank,  1,1,...,1
T

e   is the column vector of n ones, c is an n-

dimensional column vector and T denotes transpose. 

The basic assumptions of Karmarkar’s algorithm include: 

                                  0Ae                                                                                                (2) 

                                  the optimal objective value of (1) is zero.                                        (3) 

Notice that if we define
0 e

x
n

 , then assumption (2) implies that x 0
 is a feasible solution of (1) and each  
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component of x 0
 has the positive value

1

n
.Any feasible solution x of (1) is called an interior feasible solution if 

each component of x is positive. This implies that x is not on the boundary of the feasible region; needless to say 

that the constraint 1
T

e x   in (1) implies that 

1

.Therefore1  
j

n

j

x



  1,1, ...,1 ,
T

e   leading to the conclusion that 

a consistent problem in Karmarkar’s standard form has a finite optimum. In Fang and Puthenpura [2], it is 

shown that any linear programming problem in standard form can be expressed in Karmarkar’s standard form. 

Karmarkar’s algorithm and its specifics are well-exposed in [2]. Karmarkar’s algorithm is an interior-point 

iterative scheme for solving linear programming problems. 

Interior-point methods approach the optimal solution of the linear program from the interior of the 

feasible region by generating a sequence of parameterized interior solutions. 

Most of the interior-point methods can be categorized into three classes: the pure affine scaling 

methods, the potential reduction methods and the path-following methods. The specifics of these methods are 

described in section 3. The primary focus of this article will be on path-following methods. 

 The basic idea of path-following is to incorporate a barrier function into the linear objective. By 

parameterizing the barrier function, corresponding minimizers form a path that leads to an optimal solution of 

the linear program. 

The main motivation for this work comes from the work of Shen and Fang [3], in which the 

“generalized barrier functions” for linear programming were defined to create an ideal interior trajectory for 

path-following. The key components such as the moving direction and the criterion of closeness required for a 

path-following algorithm were introduced for designing a generic path-following algorithm with convergence 

and polynomiality proofs under certain conditions. 

This work is aimed at exploiting the convergence results in [3] to a parameterized continuous dynamical system. 

This would lead to the construction of appropriate energy and Lyapunov functions which would be utilized to 

show that the trajectories of the dynamical system converge to the optimal solution of the linear program under 

appropriate assumptions.  

One is not aware of any interior-point dynamic solver reported in the literature. Most dynamic solvers 

have been used for the neural network approach. Such investigations can be referred to in Bertsekas [4], Cohen 

and Grossberg [5], Hopfield and Tanks [6], Wang [7, 8, 9, 10],and Zah [11]. In section 4, we formulate a 

continuous dynamical system and our main results captured in a sequence of lemmas.Section 5 presents our 

conclusions and direction of a follow-up research. 

 

II. INTERIOR-POINT METHODS 
2.1    Affine Scaling Methods 

Let A, c and x be as defined in (1) and let b be an m-dimensional column vector. Consider the following linear 

programming problem in standard form: 

 
2

min

. . , (4)

0

T
c x

LP s t Ax b

x











 

whose linear dual problem is: 

 
2

min

. . , (5)

0

T

T

b y

DLP s t A y s c

s

 









 

where
m

y R  and s is an n-dimensional column vector. A feasible solution  ,y s  of 
2

DLP  is called an interior 

feasible solution if 0s  . 

Following Noble [12], the basic strategy of the affine scaling method is as follows: given an interior 

feasible solution, x of
2

LP , construct a simple ellipsoidal approximation of its feasible region, that is centered 

at x . Then optimize the objective function 
T

c x  over this ellipsoid and use the resulting direction with a suitable 

step-length to define a new algorithm iterate. 
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Let  
1 2
, , ...,

n
x x x x  and  Diag X x  be the diagonal matrix with 

T
c x  as thej-th diagonal element, 

for  1, 2, ...,j n . 

The Dikin ellipsoid at x  is defined as   2
: , ( ) 1

Tn

x
E x R Ax b x x X x x


      . Then the affine 

direction at x  is the solution of the following direction-finding problem: 

                       

 
2

min

. . 0,

1.

(6)

T

x

T

c d

ADFP s t Ad

d X d












 

It is noted in [6] that 
x

E is always contained in the feasible region of 1LP  for any interior feasible solution x  

of
1

LP . 

For a pure affine scaling algorithm, there is no polynomial-time proof, but it is known to converge when A has 

full row rank (Saigal [13] and [3]). 

 

2.2    Potential Reduction Methods 

These methods are typically designed to find successive iterates by solving the following optimization problem: 

 

     
1

1

min , , In In

. . , 0,

, 0

(7)

n

T T

j

j

T

f x y s q c x b y x

PRM s t Ax b x

A y s c s



  

 

  











 

where q is a positive parameter of the function f and  , ,f x y s  is called a potential function. 

Remarks 

The difference
T T

c x b y  is the duality gap between the solution pair  ,x y  and it is common knowledge that 

the gap is always nonnegative.  The optimum of  
1

LP  is attained when the duality gap is reduced to zero. Note 

that  0, if  In
T T T T

c x b y q c x b y     

The second part,  
1

In
j

n

j

x



 of f , approaches   as 0
j

x


  for some j , where 
j

x  is the 
th

j  component of 

x. Therefore an optimal solution of  
1

PRP  must be repelled from the boundary of the feasible domain. The 

potential function is a surrogate for the goal of reducing the duality gap to zero from the interior. 

[1] used a specific form of the potential reduction method. 

 

2.3   Path-following Methods 

Consider a linear program:  

                                               

min

. . (8)

0

T
c x

P s t Ax b

x











 

Let    0
: , 0 and : , 0

n n
W x R Ax b x W x R Ax b x         be the interior feasible domain. 

Let the following assumptions hold: 

                                              A has full row rank,                                                                                     (9) 

                              
0

W W   , where 0W is the closure of
0

W , and  is the empty set        (10) 

                              W is compact.                                                                                                 (11) 
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2.3.1    Definition  

A function :W R   is called a generalized barrier function for linear programming (GBLP), if 

 1 :P W R   is proper, strictly convex and differentiable, where R  is the extended real line. 

Remark 

The properness property of  is equivalent to the requirement that  x   be strictly bounded below by   for 

all x W  and be strictly bounded above by   for some x W . 

(P2) if the sequence   0

k
x W  converges to x with the 

thi  component, 0
i

x  then   lim
k

k i
x


    

(P3) the effective domain of 
 
contains 

0
W . Equivalently,   

0
. is finiteW x W s t x  . 

Let 0   and define an augmented primal problem  
u

P  associated with a GBLP function follows: 

    

                                                    

 min

. . (12)

0

T

u

c x x

P s t Ax b

x













 

 

Then we have the following results from [3]: 

i.  
u

P  has a unique optimal solution, denoted by  x  , in 
0

W , 

ii.   T
c z   is a monotone decreasing function in  , 

iii. The set   : 0x     characterizes an interior, continuous curve in
0

W . 

iv. Given a decreasing positive sequence 
k

  such that  lim 0, if * lim
k k k k

x x 
 

   then x*  is 

the optimum of (P). 

v. Suppose that x  is a given interior feasible solution to (P) and x  solves the problem: 

 

   

 
1

2
1 2

min

. . 0 (13)

1,

T

c x x

P s t A x

X x



 




  

 

  

   







 

where X  is any positive definite symmetric matrix and 0 1  . Then, x  defines a moving direction at x  

below: 

       
1

2
.

T T
x X I XA AX A AX X c x 



      
 

      

Under appropriate condition on X , c and , it is proved in [12], that any convergent feasible sequence of 

solutions to  
u

P  must converge to the optimal solution to (P) as 0 .


  

From Bazaraa and Shetty[14], we also have the following result: 

 

2.3.2    Lemma 

Let X be a nonempty closed set in 
n

R  and f, g, 
1 2
, , ,

m
g g g be continuous functions on 

n
R , where 

, ,f g 1 2, , , mg g g  are scalar functions and g is an m-dimensional vector function whose components are 

1 2
, , ,

m
g g g Suppose that the set   : 0x X g x   is not empty and that B is a barrier function that is 

continuous on   : 0x g x  , where     
1

ˆ
m

i

i

B x g x


  and ̂  is a function of one variable that is continuous 

over  : 0y y   and satisfies  ˆ 0, if 0,y y    and  
0

ˆlim .
y

y

    Furthermore, suppose that for any 

given  0, if
k

x   in X satisfies   0
k

g x   and      
k k

f x B x     where     is defined by: 
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        inf : 0, , (14)f x B x g x x X       

then 
k

x  has a convergent subsequence. Moreover, 

(i) For each 0,  there exists an x X

  with   0g x


  such that 

           inf{ : 0, },f x B x f x B x g x x X
 

          

(ii)        inf : 0, inf : 0 ,f x g x x X        

(iii) For  0, f x


   and     are nondecreasing functions of   and  B x


 is a nonincreasing 

function of . 

 

2.3.3    Theorem 

Let :
n

f R R  and :
n m

g R R  be continuous functions, and let X be a nonempty closed set
n

R . Suppose 

that the set   : 0x X g x   is not empty. Furthermore, suppose that the primal problem of minimizing  f x  

subject to   0,g x x X   has an optimal solution x  with the following property  P : Given any 

neighborhood N around x  , there exists an x X N   such that   0.g x  Then 

        
0 0

0, ,minimum lim inff x g x x X
 

   
 

     where     is defined by (14). 

Letting       ,f x B x
 

     where x X

 and   0g x


 , then the limit of any convergent 

subsequence of  x


 is an optimal solution to the primal problem, and furthermore   +
0 as 0B x


   . 

The next section establishes and collects a sequence of lemmas needed in the proof of the asymptotic behavior 

of the system’s trajectories. 

 

III. CONTINUOUS DYNAMICAL SYSTEMS RESULTS 
In this section, we formulate an analogous continuous dynamical system and establish a sequence of 

lemmas which would be invoked to prove that the system’s trajectories converge to the optimal solution of (P) 

under some appropriate conditions. 

Let A be an m x n matrix of full row rank. Let 
n

R


 denote the set : 0
n

x R x  . For x W , let 

z x r   for some
n

r R . Then .Ax b Az Ar b    Taking  
1

,
T T

r A AA b


   we see that 0Az  . 

Therefore, the system 0Az  is consistent if and only if the system Ax b  is consistent. In the sequel we let 
n

r R   be such that Ar b  and z x r  . 

Let   be a constant such that 0 1  . Let X  be any positive definite symmetric matrix of order n 

and let p and q be norm conjugates of each other such that 1 ,p q    and 1 1 1p q  . 

     Let 
j

a  denote the 
th

j  row of A for  1, 2, ...,j m . For fixed A, define the map   1
:

n
A R R


   by 

1

1

.
m

p

jp

j

p

Az a z




 
 
 
  

Remark 

p
Az is called the p-norm of the function Az . Unless explicitly stated we use the 2-norm in this article. 

Define
2

02

2

max
z

Az
A

z



  
 
  

. For all x W and for any given r Rn  such that z x r   consider the 

function: 

              

   

       

, , , ,

2
1 2

2

1

(15)

p p r

n

T

p j

j

E z E z

c z r p Az r z r z r X z
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where 

               
if 0 if 0

max , 0 and max , 0
0 if 0 0 if 0

w w w w
w w w w

w w

 
  

    
 

 
 
 

, 

 

for ; 0, 0, 0, 0.w R r p       

Note the following: 

(i) Property (P1) of definition 2.3.1 implies that,  z r     for all z in the null-space of A and 

 z r     for at least one z in the null-space of A. 

(ii) Properties (P1) and (P2) of definition 2.3.1 imply that  
2

z r    , for. 

(iii) Property (P2) of definition 2.3.1 implies that if  : 1, 2,....
k

z k   is any positive convergent sequence 

in the null-space of A such that   ˆlim
k

k
z r z r


   , with  ˆ 0

j
z r  , for some  1, 2, ...,j n , 

then   lim
k

k z j
z r


    . The latter ensures that the minimization of  E z  is never achieved 

at the boundary of the set : 0z z r  , using a gradient projection method in the minimization 

program. 

(iv) 
p

p Az is penalty for the violation of  z N A . 

(v)  
1

j

n

j

r z r




 penalizes  violations of z r  0. 

(vi)  
2

1 2

2
X z 


 is the Lagrangian term associated with the constraint

1 2 2

2
0X z 


  . 

The stage is now set for our dynamical system formulation and the establishment of key lemmas needed for the  

proof of our main result. 

Let 0 1   and 

       
2

1 2

1 2 2
: 0 , : 0 , and : 0 ,

n n n
S z R Az N A S z R X z T z R z r


             

where r is given and defined as on the previous page. Let 
0

andt t  be any pair of time variables such 

that
0

0t t  , and let z0 be an n-dimensional column vector. 

For a differentiable function
1

:
n

D R R , let  
z
D z  denote the gradient of  D z  with respect to z. Observe 

that   n

z
D z R   for each z Rn . 

     Consider the following dynamical system: 

                       

    

 

, , , , 0

0 0

0 2

; 0 (16)

( ) (17)

int . (18)

z p p r
z t E z t t t

z t z

z S T

 
   









 

Then  
0

0

0

n

j

j

z r




  , using the definition,  max , 0w w

   and the fact that

0
0z r  , by virtue of z0 

being in int(T).  

System (16) can be treated as a control system of the form: 

          
 1 (3

(19)
T

z c A       

where 
             1 1 2 2

,
Az p

z p Az z z r               and 

       
2

3 3 1 2

2z
z X z   


     . 

   1 2
,  , and 

 3
  can be regarded as controls. These controls will be implemented such that the trajectories of 

(16), (17) and (18) will be forced into the feasible region  
1 2

intS S t   and maintained there while moving in  
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a direction that decreases  T
c z r . The following sequence of lemmas will be found useful in the sequel. 

Let 
n

I  be the identity matrix of order n and let  
1

T T

n
P I A AA A



   be the projection matrix onto the null-

space of A. 

 

3.1    Lemma 

The dynamics of system (16) when restricted to  
1 2

intS S t   are described by: 

                                                                            
  (20)

0 (21)

z
z P E z

Az

  




 

Proof 

When sliding along S1 , motion is described by Az  0and Az  0. 

From (20)
     1 2 3

0.T
Az Ac AA A A         

Since  
1

T
AA



 exists, (rank A = m by (9)) we deduce that: 

                                                              
        

1
1 2 3

(22)
T

AA A c  


      

Substitute (22) into (19) to get       
1

2 3
.

T T

n
z I A AA A c  



     
 

  

Now, 0
Az p

Az  since
1

0.z S Az    Also  
0

0

0

n

z j

j

z r




   since    
0

0

int 0

n

j

j

z T z r




    , 

showing that      2 3
.

z
E z c       

Therefore: 

                     (23)
z

P E zz     

Observe from (15) that the term  
2

1 2

2z
P X z 


   appears on the right side of (26).  

The next lemma gives a result on  
2

1 2

2z
P X z 


  . 

3.2    Lemma   

If
1 2

0 z S S   , then  
2

1 2

2
0

z
P X z 


    

Proof  

Observe that    
2

1 2 2

2
2

z
P X z P X z

 
    . Suppose that  

2
1 2

2
0

z
P X z 


    for 

some
1 2

0 .z S S   Then  2
2 0.P X z


  Thus 

2
0PX z


  and: 

             
      

2 2
1 2 1 2 2

2 2
2 (24)

n z z
I P X z X z X z 

  
          

However, for any
1

z S : 

                                             
2 1 2

1 2 1 2

2 2
( 0 (25)

T T
T

n z z
P X z z AA A X z Az 


 

         
   

   

since 0Az  . It then follows from (24) and (25) that
2

0
T

z X z


 . We conclude from the positive definiteness of 

X  that 0z  . This contradicts the nontriviality assumption on z and the lemma is established.  

Recall that 
j

a  is the 
th

j  row of the matrix A, for 1, 2,...,j m . For 1p  , the next lemma gives the form of the 

gradient of 
p

Az for any z that is not in the null-space of A. 

3.3    Lemma  
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For any 1p   

and
1
,z S                                 

        1 1 1

1 1 2 21
sgn , sgn , , sgn (26)

T

p p p

z m mp p

p

TA
Az a z a z a z a z a z a z

Az

  


    

Proof 

Write  
1 2
, , ...,

T

m
z z z z .                     

 
1

1

1 2

and , , , (27)
p

j p p p

j

pm

zp p

n

t

Az a z Az Az Az Az
z z z

  

  

  
   
   

  
   

If
1

z S , then 

 
 

 

  

1

1

1 1

1

1

1 1

1

1
sgn

p

p

m m
p p

j j j jp m
p

j j j j

j

j

m m
p p

j j j jk

j j

k k

Az a z a z a z a z
z a z a z z

a z

a z p a z a z a
p

    

   
  





 







 
 
 

 
 
 

 


 

 

   

1

1 11

1

1 1

1

1
sgn sgn

pm
p

j m m
p pj

j jk j j jk jm p
p

j jp
j

j

a z

a z a a z a z a a z
Az

a z

 



 



 

 
 
 


 


 

Hence: 
 

  z pAz  

          

     

 

 

 

. .

. .

1 1 1

1 21

1 1 1

1

1 111 21 1

1

12 22 2 2 2

.1 .

1

1 2

1
sgn , sgn , , sgn

sgn...

... sgn1

... sgn

t
m m m

p p p

j j j j j j j jn jp

j j jp

p

m

p
T

m

p p

p p

p

n n mn
m m

a z a a z a z a a z a z a a z
Az

a z a za a a

a a a a z a z A

Az Az

a a a a z a z

  



  











 

 
 
 

  
  
  
  
  

   
   

  

 

 

 

.

.

1

1 1

1

2 2

1 .

1

sgn

sgn

sgn

(29)

p

p

p

m m

a z a z

a z a z

a z a z









 
 
 
 
 
 
 

 

 

3.4   Lemma ([12], p429) 

For any square matrix M, 

  
1

2

2
maximum eigenvalue of 

T
M M M  

The following definition is a generalization of the notion of “cores of targets” used in Ukwu [15]. 

 

3.5    Definition 

The core of the target S1  for the dynamical system: 

                                                                      (30)zz E z   

is the set  0

n
z R  of all initial points that can be driven to the target S1  in finite time and maintained there, 

thereafter by an appropriate implementation of some feasible control procedure. 
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Denote this set by  
1

core S . The following lemma demonstrates that under certain conditions  
1

core S  is 

nonempty. 

 

3.6    Lemma 
 

If: 

                                                             
1

(31)
T T T

pzz A AA E z k AzA


   

for some 1p   and 
1

z S  , with some k  0 , then the trajectories of: 

                                                   
 

  0

(32)

(33)0

z
z E z

z z

 




 

hit
1

S  in finite time and remain there thereafter. 

 

 

Proof 

Note that for any  ,
n

n
z R z Pz I p z    with  Pz N A  and  

n
I P z   column space of A. 

 
2n

I P z  is the Euclidean distance of x from  N A . Now,  

     

       

2
1 1 1

2 2 2

1 1 1

2

2 2 2 2

T T T T T T

Tz
T T T T T T T T

z p

d d
A AA Az A AA Az A AA Az

dt dt

A AA Az z A AA Az z A AA A E z k Az

  

  



       
 





 

 z S1 with some k  0 , by the hypothesis of the lemma. Therefore: 

                                                               
 

1

1
2

2

(34)
T T

p
T T

d k
A AA Az Az

dt A AA Az








 

We now use the fact that all norms in 
n

R  are equivalent to establish the existence of constant 0l   such 

that
2
,

p
Az l Az

1
z S   and 1p   (see Stoer and Bulirsch [16], p. 185). Consequently: 

                                                           
2

(35)
p

Az l Az    

It now follows from (34) and (35) that: 

               

 
   

 

1

2 21 1
2

2
2 2

1

2

(36)

T T

T T T T

T T

d kl kl
A AA Az Az Az

dt A AA Az A AA Az

kl

A AA



 



 
 




 

Showing that  
1

2

T T
A AA Az



 is a time decreasing function. Integrating the differential inequality from time 0 

to time  t  yields: 

                                                  
 

1 1

0 1
2 2

2

(37)
T T t T

T T

kl
A AA Az t A AA Az t

A AA

 


   

The inequality (37) holds for all: 

                                                            
 

 

2
1

1
2

0
2

(38)

T T

T T

A AA

t A AA Az
kl





  

Hence for each
0 1

z S , there exists: 
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Such that: 

                                                                              
1

2

0 (40)
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showing that    
1

0
T T

A AA Az t


 ,which in turn proves that  
1

z t S . Therefore, if for any initial point z0 , 

we denote the solution through  
0

0, z  by    
0

,z t z t z and define: 

       

                                         
    

     

0 0 1

0

inf 0 : , (41)

, (42)

t z t z t z S

z t Py t t t z

  

 
 

for some function 
01(.),  then ( ) ( ),y z t S t t z   , and hence 

0 1
core( ).z S  

In a subsequent paper, we will impose appropriate conditions under which the trajectories of: 

                                                                                
 

  0

(43)

(44)0

zz E z

z z

 




 

converge to z r

 , where z r


   is an optimal solution of (5) for each 0  . Then we can appeal to Theorem 

2.2 of [3] to assert the convergence to the optimal solution of (P), noting that a positive decreasing sequence of 

parameters 
k

  with limit 0 may be used in place of  . 

 

IV. CONCLUSION 
In section 1 of this work, we reviewed the interior-point approach to solving linear programming 

problems and in this direction briefly discussed the pioneering linear programming effort of [1], in which he 

proposed a polynomial-time algorithm for solving linear programming problems. In section 2, we presented 

three principal interior-point methods of solving linear programming problems in standard form: namely, affine 

scaling, potential reduction and path-following methods. Karmarkar’s work, [1] fell into the second group of 

methods. 

This work was motivated partly by interior-point concepts and largely by the path-finding methods in 

[3] for solving linear programming problems. Many real-life problems which could be formulated as linear 

programming problems are dynamic in nature; for example, the inventory level of some item at a given time and 

changes in demand levels of some consumer goods due to price fluctuations and seasonal variation. Also on-line 

optimization may be required in many application areas, such as satellite guidance, robotics and oil outputs from 

oil wells and refinery operations. Some of these problems may not require exact optimal solutions but particular 

solution at specified tolerance levels, within feasible guidelines or constraints. In particular solutions at positive 

levels may be desired for all decision variables, implying that interior solutions are desired. These and many 

other problems of the continuous variety could be more realistically modelled by continuous dynamical systems. 

Unfortunately, research in this direction has been based mainly on neural network approach, none of which is 

interior-point oriented. In section 3, we formulated an interior-point based dynamical system for solving linear 

programming problems in standard form. The key ideas for this formulation came from the examination of [3]. 

Then, we stated that under certain conditions, the solutions of our dynamical system would converge to the 

solution of a corresponding linear programming problem in standard form. We proceeded to establish a 

sequence of lemmas which would be needed to prove that our solutions would have the right convergence 

property. These results were made possible by the exploitation of norm properties, their derivatives and the 

theory of differential equations. 

Sequel to this paper, appropriate energy and Lyapunov functions will be constructed and utilized to 

show that the trajectories of the dynamical system converge to the optimal solution of the linear program under 

appropriate assumptions. This approach holds a lot of promise for an extension of our result to neural networks 

where dynamical systems, energy and Lyapunov functions are used extensively. 
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