NASAL CARRIAGE OF STAPHYLOCOCCUS AUREUS AMONG HEALTHY STUDENTS IN A NIGERIAN UNIVERSITY

*1Dr. James Garba Damen, 1Essien Unyime Cosmas and 2Victoria M. Daminabo

1Department of Medical Laboratory Science Faculty of Medical Sciences University of Jos.
2Department of Science Laboratory Technology, School of Science and Technology, Port Harcourt Polytechnic, Rumuola, P.M.B. 5936, Port Harcourt, Rivers State.

*Corresponding Author: Dr. James Garba Damen
Department of Medical Laboratory Science Faculty of Medical Sciences University of Jos.

ABSTRACT

Background: *Staphylococcus aureus* (*S. aureus*) nasal carriage is potential source for their continuous spread as well as risk factor for subsequent infections. Studies on *S. aureus* nasal carriage are important in determining the epidemiology of staphylococcal infections and a guide to infection control and preventive measures. Aim of the study: The present study was conducted to investigate the carriage prevalence and antibiotic susceptibility of *S. aureus* among students studying Medical Laboratory Science at the University of Jos. Materials and methods: Two hundred and forty one (241) nasal swab specimens were obtained from Medical laboratory science students of the University of Jos. Swabs were plated on Mannitol salt agar (MSA), culture plates were incubated at 37°C for 18-24hours. After incubation *S. aureus* isolates were identified by their characteristic yellowish colony on MSA. Standard inocula were prepared by adjusting density of saline suspension of *S.aureus* to 0.5 McFarland’s standard. Antibiotic sensitivity was performed on Mueller Hinton agar by disc diffusion method. Zone diameter was read according to Clinical and Laboratory Standards Institute (CLSI) interpretative break point (CLSI 2004). Results: This study has established an overall carriage prevalence of 37.3%. The carriage rate was more in female 51 (40.4%) than male students 39 (33.9%). Regarding year of study 300level students 53 (46.4%) recorded the highest carriage rate while the least was noted among 500 level 8 (21.6%). Antibiotic susceptibility testing was performed using eight (8) antibiotics disc, all the isolates tested (n=90) were susceptible to vancomycin 90 (100.0%). Conclusion: There is high prevalence of *S. aureus* nasal carriage among Medical Laboratory Students at University of Jos. We recommend that studies on other potential sources like health care workers, medicine students, nursing students etc. be carried out in our setting.

KEYWORDS: *Staphylococcus aureus*, nasal carriage, Medical laboratory science students.

INTRODUCTION

Staphylococcus aureus is carried by 20-30% of the human population (Van Belkum et al., 2009). Healthy individuals may be persistent carriers of *Staphylococcus aureus* (*S. aureus*) for periods ranging from a few weeks to many years and mostly in the anterior nares (Kluytmans et al., 1997). Also carriers can be healthy human or animal host, carrying potentially pathogenic microorganisms without their knowledge or showing any clinical signs and symptoms of illness (Nester et al., 2004).

Colonization of the anterior nares is a recognized risk factor for subsequent *S. aureus* infection (Wertheim et al., 2005). Risk factors for colonization include young age, gender, hospitalization and exposure to livestock (Von Eiff et al., 2001; Aubry-Damon et al., 2004; Wertheim et al., 2005; Gorwitz et al., 2008).

Although *Staphylococcus aureus* can be regarded as human commensal, it is a potential lethal opportunistic pathogen causing varieties of community-acquired and hospital acquired bacterial infections. *S.aureus* is the main cause of opportunistic infections and diseases such as skin infections including staphylococcal scalded skin syndrome (SSSS), osteomyelitis, meningitis, pneumonia, septicemia (Shanmugam et al., 2009). However, *S.aureus* spreads more likely from healthy nasal carriers from their hands, nose or throat by way of touching, sneezing, talking and coughing (Shanmugam et al., 2009).

In addition, several reports have further revealed the serious problem posed by *S. aureus* infections due to its spread between healthy hospital personnel and patients and vice versa, medical students as well as non clinical students were not left out in the cycle of transmission (Lamikanra et al., 2006; Adesida et al., 2007; Santhosh...
et al., 2007; Baliga et al., 2007; Shanmugam et al., 2009).

Although a variety of studies have been conducted to examine the prevalence of nasal carriage of *S. aureus* among general population, but only little or no study had been conducted among students in the University of Jos. Therefore, this study was aim to determine the prevalence and antibiotic susceptibility profile of nasal carriage of *S. aureus* among medical laboratory science students at the University of Jos.

MATERIALS AND METHOD

Study area/population

This study was carried out among Medical Laboratory Science Students University of Jos, Plateau State, Nigeria. Jos is a city located in the middle belt geopolitical zone in Nigeria and it is the administrative capital of Plateau State.

Sample size

The minimum sample size for this study was calculated using the formula (Daniel, 1999).

\[
N = \frac{Z^2 \cdot P(1-P)}{d^2}
\]

Collection of specimen

Two hundred and forty one (241) students of the department of medical laboratory science at the University of Jos were used in this study. After informed consent of each student was obtained, questionnaires were administered to all students who volunteered for the study. The data obtained from the questionnaires include student’s age, sex and level of study.

The specimens were collected as follows: a sterile cotton tipped swab was moistened in sterile normal saline and swirled inside the anterior nares and rotated clock wise and anticlock wise. Swabs were streak-inoculated onto mannitol salt agar (MSA) (Oxoid), a selective medium for the isolation of *S. aureus*. The plates were incubated at 37°C for 24ours and observed for growth. After growth, *S. aureus* were identified on the basis of colonial characteristics, Gram stain, biochemical tests namely, catalase and coagulase.

Preparation of standard inoculum

The agar diffusion method recommended by the CLSI (2004) was employed to determine the susceptibility to antibiotics. Briefly, the standard inoculum of pure isolates of *S.aureus* was prepared by transferring 2-4 representative isolates from culture plates into a universal bottle containing sterile normal saline. The preparation was shaken to achieve a homogenous suspension. Standard inoculum was achieved by adjusting the turbidity of homogenous suspension with 0.5 McFarland standard.

Antimicrobial sensitivity testing

Mueller Hinton Agar (MHA) was used to perform antimicrobial sensitivity testing. The dried agar surface was inoculated by using a sterile swab dipped in a standardized *S.aureus* cell suspension. Antibiotic discs were dispensed on dried surface of Mueller Hinton agar and the plates were incubated aerobically for 35°C and read at 24 h. Zone diameter were read manually using ruler and interpreted according to CLSI interpretative break point (CLSI, 2004). The following antibiotics were tested: vancomycin, gentamicin, ciprofloxacin, chloramphenicol, tetracycline, streptomycin, ampicillin, and erythromycin.

STATISTICAL ANALYSIS

The data was subjected to statistical analysis using SPSS statistical package 21 to determine any significant relationship between nasal carriage and age, gender and level of study. P value < 0.05 was considered significant at 95% confidence interval.

RESULT

Out of 241 nasal swab samples collected and screened, 90(37.3%) yielded *S.aureus*. The prevalence of nasal carriage of *S.aureus* according to gender shows that female students 51(40.4%) had the highest colonization rate compared to their male 39(33.9%) counterpart. There was a statistically significance difference in gender colonization rate (P=0.00). Regarding age group, the nasal colonization rate of *S.aureus* occurred in this order: 16-20 years (5 isolates, 50.0%), 26-30years (20 isolates, 42.5%), 21-25years (60 isolates, 37.0%), 31-35years (6 isolates, 35.0%) and 36-40years (1 isolate, 20.0%). There was no observed significance difference in the colonization of *S.aureus* in relation to age group as recorded in table 1.

Table 2 shows the colonization rate of *S.aureus* in relation to year of study. Results revealed that 300 level students 53(46.4%) had the highest carriage of *S.aureus*, while the least colonization rate was observed among 500 level students 8(21.6%). However, there was significant difference in colonization rate of *S. aureus* in relation to year of study (p=0.01).

Susceptibility pattern of nasal isolates was in this order: vancomycin 90 (100.0%), > gentamicin 71 (78.8%), > ciprofloxacin 48 (53.3%) ~ chloramphenicol 48 (53.3%), > tetracycline 45 (50.0%), > streptomycin 39 (43.3%), > ampicillin 8 (8.8%), > erythromycin 3 (3.3%) (figure 1.).
Table 1: Distribution of *Staphylococcus aureus* nasal carriage among Medical Laboratory Science Students at the University of Jos in relation to gender and age.

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. examined</th>
<th>No. Positive (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>115</td>
<td>39 (33.9)</td>
<td>0.00</td>
</tr>
<tr>
<td>Female</td>
<td>126</td>
<td>51(40.4)</td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-20</td>
<td>10</td>
<td>5(50.0)</td>
<td>0.76</td>
</tr>
<tr>
<td>21-25</td>
<td>162</td>
<td>60(37.0)</td>
<td></td>
</tr>
<tr>
<td>26-30</td>
<td>47</td>
<td>20(42.5)</td>
<td></td>
</tr>
<tr>
<td>31-35</td>
<td>17</td>
<td>6(35.0)</td>
<td></td>
</tr>
<tr>
<td>36-40</td>
<td>5</td>
<td>1(20.0)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>241</td>
<td>90(37.3)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Distribution of *Staphylococcus aureus* nasal carriage among Medical Laboratory Science Students at the University of Jos in relation to year of study.

<table>
<thead>
<tr>
<th>Year of study</th>
<th>No. examined</th>
<th>No. positive (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>18</td>
<td>8(44.4)</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>26</td>
<td>11(42.3)</td>
<td>0.01</td>
</tr>
<tr>
<td>300</td>
<td>114</td>
<td>53(46.4)</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>46</td>
<td>10(21.7)</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>37</td>
<td>8(21.6)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>241</td>
<td>90(37.3)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Antibiotic sensitivity pattern of *Staphylococcus aureus* nasal carriage among Medical Laboratory Science Students at the University of Jos.

DISCUSSION

S. aureus is a normal commensal in the nose of about 20-30% of healthy people (Van Belkum et al., 2009). Different factors contribute to the transmission of this microorganism, such as crowded living conditions and poor hygiene (David and Daum, 2010; Shibabaw et al., 2013). The presence of *S. aureus* on the skin appears to play a key role in the pathogenesis of infection with *S. aureus* (Casewell and Hill, 1986; Wertheim et al., 2005). Eradication of *S. aureus* from the nose reduced the incidence of invasive infection (VonEiff et al., 2001; Wertheim et al., 2005).

In this study, the prevalence of *S. aureus* nasal carriage among students was 37.3%. This value is higher than the results 26.7% of previous study conducted by Muhammad et al., (2014) from Maiduguri, Nigeria, 19.3% by Chen et al., (2012) from Taiwan and 17.5% by Assafi et al., (2015) from Iraq. However, our prevalence was relatively low compare to similar study reports 72.7% by Ugwu et al., (2016) from Delta, South South Nigeria, 70.0% by Akinjogunla et al., (2014) from Uyo South South Nigeria, 56.3% by Nsofor et al., (2015), from Owerri and 69.4% Okamo et al., (2016) in Tanzania. We attribute the variation in the prevalence to the difference in the geographical location of the study areas.

With respect to gender, the prevalence rate from female to male students were 51(40.4%) and 39 (33.9%) respectively. This observation is in line with the findings of Ugwu et al., (2016) in Delta, Nigeria, Assafi et al.,
(2015) in Iraq, Lamikanra et al., (1985) in Ife, Nigeria and Muhammad et al., (2014). However, our results is inconsistent with the report of Abdulhadi et al., (2008) who revealed that male 61.5% had higher prevalence of S. aureus nasal carriage than their females 38.5% counterpart among students population in Kano metropolis.

A total of 8 different antibiotics were used to test for susceptibility pattern of S. aureus nasal carriage isolates (n=90). Our study revealed that all isolates were sensitive to vancomycin 90 (100.0%). This finding is the same as the susceptibility result obtained in a similar study in Tanzania where all the S. aureus nasal isolates were sensitive to vancomycin (Okamo et al., 2016). However, contrary reports from similar studies has been documented: 81.3 % susceptibility to ciprofloxacin and pefloxacin Muhammad et al., (2014) from Maiduguri, Nigeria, 100.0% sensitivity to cotrimoxazole Lamikanra et al., (1985) in Ife, Nigeria.

CONCLUSION
To the best of our knowledge, this is the first study investigating nasal carriage prevalence, antimicrobial resistance of S. aureus among Medical laboratory science students at the University of Jos, Nigeria. The study recorded an overall prevalence of 37.3%. The carriage rate was higher in females 51 (40.0%) than male 39 (33.9%). Further studies may be required to established carriage rate in health workers, Medicine and surgery students and Nursing students so as to further the niches of this strain.

REFERENCE

20. Shanmugam, J., Gopal, R., and Kumar, S. S. The prevalence, antibiogram and characterisation of *staphylococcus aureus* including MRSA among the healthy staff, medical students and patients from Sri Manakula Vinayagar Medical College and Hospital (SMVMCH), Puducherry. DSTE project report (Government of Puducherry), 2009.

