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SUMMARY 16 

 Markov chain model was applied in modelling the field efficacy of rDNA vaccine 17 

based on recombinant Bm86 (TickGard™)  a membrane bound protein gut 18 

antigen from Boophilus microplus against Boophilus microplus and Boophilus 19 

decoloratus tick species. Data were imputed into a Markov Chain modelling 20 

system using the EXCEL programming tool in a mathematical equation that has 21 

two major components namely, states and transitions. Simulation of Vaccinated 22 

versus Control against the Two tick species at 25ºC with relative humidity of 23 

85% showed an initial fluctuation then equilibrium was gained on day 46 for the 24 

Control model. Equilibrium was gained on days 30 and 36 for the vaccinated 25 

cattle population against B. microplus   and Boophilus decoloratus respectively. 26 

There was a shortened decadal period of 10 days earlier which has a direct 27 

impact on the spread of B. microplus and B. decoloratus in subsequent 28 

generations. 29 

 30 

KEY WORDS: Boophilus ticks, Markov Chain, Model, Efficacy, TickGard™ 31 

 32 

INTRODUCTION 33 

Ticks and tick borne diseases affect 34 

animals and human health worldwide 35 

and are the cause of significant 36 

economic losses. Approximately 10% 37 

of the currently known 867 ticks 38 

species act as vectors of a broad range 39 

of pathogens of domesticated animals 40 

and humans and are also responsible 41 

for damage directly due to their 42 

feeding behaviour. The impact of the 43 

global economy is considered to be 44 

high and although some estimates are 45 

given, there is a lack of reliable data, 46 

(Jongejan and Uilenberg, 2004). Ticks 47 
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can cause severe toxic conditions such 48 

as paralysis and toxicosis, irritation 49 

and allergy. The diseases transmitted 50 

by ticks to livestock are also a major 51 

constraint to animal production 52 

predominantly in (sub) tropical areas 53 

of the world. Generally, tick borne 54 

protozoan diseases ( e.g. Babesiosis 55 

and Theileriosis) and Rickettsial 56 

diseases (e.g. Anaplasmosis and 57 

Heartwater or Cowdriosis) are pre 58 

eminent health and management 59 

problems of cattle and all ruminants as 60 

well as buffaloes, affecting the 61 

livelihood of farming communities in 62 

Africa, Asia and Latin America 63 

(Walker et al, 2003). 64 

Tick-borne diseases rank high in terms 65 

of their impact on the livelihood of 66 

resource poor farming communities in 67 

developing countries (Perry et al., 68 

2000; Minjauw and McLeod, 2003). 69 

This is particularly relevant in parts of 70 

sub-Sahara Africa, Asia and Latin 71 

America where the demand for 72 

livestock is increasing rapidly, 73 

(Delgodo et al., 1999, Tonnesen et al., 74 

2004). Boophilus species are one-host 75 

ticks that take about three weeks to 76 

complete their cycles on the host from 77 

unfed larva to engorged female, 78 

preferably on cattle. Although 79 

Boophilus ticks have short mouth-80 

parts, damage to hides and skin is 81 

considerable as the preferred feeding 82 

sites are of good leather potential. 83 

 B. microplus is the most important 84 

species; others are B. annulatus, B. 85 

decloratus, and B. geigyi and they 86 

continue to be a major threat to cattle 87 

in the tropics and sub-tropics acting 88 

both as debilitating agents and as 89 

vectors of organism that transmits 90 

disease such as babesiosis, 91 

anaplasmosis and theileriosis. The tick-92 

host relationship is complex with great 93 

sensitivity to environmental conditions 94 

such as temperature, humidity and 95 

evaporation rate in different parts of 96 

the tick’s geographical range. 97 

Control of tropical ticks and tick-borne 98 

diseases, especially in more susceptible 99 

and productive exotic or upgraded 100 

breeds of livestock, still depend mainly 101 

on intensive tick control using 102 

acaricides. However, these chemicals 103 

are toxic, leave residues in meat and 104 

milk and cause environmental 105 

pollution. The resistance of ticks to 106 

acaricides poses an increasing threat to 107 

livestock range. Vaccination using 108 

concealed antigen, was proposed by 109 

Galun, (1978) and a protective antigen, 110 

Bm86 was subsequently identified and 111 

synthesized using recombinant DNA 112 

technology.  The efficacy of available 113 

anti Boophilus microplus vaccines 114 

(TickGard
®
, Hoechst Animal Health, 115 

Australia and Gavac
®
, Heber Biotec 116 

S.A., Havana, Cuba) against Boophilus 117 

annulatus in two independent trials 118 

with two different vaccines was 119 

interesting to note (Fregoso et al.,1998; 120 

Pipano et al., 2003). The anti-tick 121 

vaccines reduces fecundity of adult 122 

female ticks rather than causing high 123 

mortalities, as has been the case with 124 

chemicals, therefore research into 125 

novel, ecologically sound, practical 126 

tick control methods should be 127 

intensified and implementation of 128 

existing methods to vaccinate against 129 

ticks and tick- borne diseases 130 

(Redondo et al., 1999; De Vos ea al., 131 

2001; Rodriguez et al., 1995 and De 132 

La- Fuente et al., 1998).  133 

The objectives of the study was to 134 

model the field efficacy of 135 

recombinant DNA vaccine based on 136 

recombinant Bm86 gut antigen 137 

(TickGard
® 

)  from Boophilus 138 

microplus against Boophilus microplus 139 

and Boophilus decoloratus tick 140 

species. 141 

MATERIALS AND METHODS 142 

Data collection 143 
 Data for the model were retrieved 144 

from work done by (Odongo et. al., 145 
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2007 and Garcia-Garcia et. al., 2000) 146 

Table 3 and experts’ opinion in regions 147 

where the recombinant Bm86 vaccine 148 

trials have been conducted on cattle. 149 

Programming   Markov chain model 150 
A Markov Chain model is a 151 

mathematical equation that has two 152 

major components: states and 153 

transitions. The model represents a 154 

system or process that moves between 155 

a number of states through transition. 156 

In this Markov vaccination model, the 157 

transitional matrix has nine states 158 

based on Boophilus life cycle using the 159 

EXCEL 2003 soft-ware package. 160 

Modelling methods 161 
The Markov chain Matrix modelling 162 

technique was employed to estimate 163 

the effect of vaccination on a naive 164 

population dynamics at different 165 

booster time of 10 days decadal period 166 

at various vaccine efficacies 167 

probabilities from literature on 168 

Boophilus decoloratus and Boophilus 169 

microplus (Caswell, 2001). The basic 170 

model was developed and used as 171 

control, compared with the immunized 172 

model. The components of Markov 173 

chain Model (MCM) were the (1) 174 

Equation system (2) Survival Rates on 175 

Host and (3) Eggs hatchability. 176 

Simulations were made by calculating 177 

the number of individuals entering into 178 

next age class interval (state) based on 179 

the survival rates probability, 180 

fecundity, development rates, mating 181 

probability of the adult females, and 182 

eggs hatchability in the present state. 183 

For consistency of the model a time 184 

step of 10 days is used in this model as 185 

well as vaccination booster intervals 186 

(Caswell, 2001). Also in this model 187 

three approaches were adapted. Firstly, 188 

the population growth pattern was 189 

observed at 25
0
C and relative humidity 190 

>85% control model. Secondly, the 191 

model was simulated for B. 192 

decoloratus and B. microplus until an 193 

equilibrium stage was seen using the 194 

constant parameters and lastly, 195 

vaccination parameters were 196 

introduced in the model and the 197 

behaviour of the population dynamics 198 

were observed for both ticks 199 

concurrently.  200 

Equation Systems  201 
The equations used for the model are 202 

given below which explains the nine 203 

(9) states of the developmental or life 204 

cycle of Boophilus species which is a 205 

one host tick.  206 

L1(i+1) =    s2Q2(i)   +   s3Q3(i)  207 

(Success rate of questing larva on host) 208 

H(i+1) =  θ × L(i)   209 

 (Probability rate of larva moulting to 210 

male nymphs) 211 

X(i+1) =  μ ×  H(i) + k1  ×  X(i) 212 

 (Rate of nymphs surviving as adult 213 

males) 214 

Y (i+1)  =  μ   ×    H(i) 215 

 (Probability rate of  female nymphs 216 

moulting into adult females) 217 

P(i+1) =  f   ×   Y + k1 x P 218 

(Survival rate of engored females 219 

ovipositing) 220 

E(i+1) = (n × Pi) × g +  k2 ×  E(i) 221 

 (Rate of ovipositing eggs hatchibility to 222 
larva ) 223 
Q1(i+1) = h × E(i) 224 

(Survival rate of newly hached larva 225 

without cuticle) 226 

Q2(i+1) = m1 × Q1(i)  227 

(Survival rate of questing larva with 228 

developed cuticle) 229 

Q3 (i+1) = m2 × Q2 (i)   +   k3   ×   Q3 (i) 230 

 (Survival rate of questing larva finding 231 

a host) 232 

 233 

RESULTS  234 
3.1 Simulations of Immunized versus 235 

Control against the two tick species 236 

Comparisons between simulations of 237 

the tick population density at 25ºC for 238 

vaccinated cattle and unvaccinated on 239 

Boophilus microplus is shown in Fig1.  240 

Initial fluctuation in the model was 241 

observed and equilibrium was achieved 242 

on day 46. In the control simulation, 243 

equilibrium was gained on day 30 for 244 

the immunized cattle population which 245 
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shows a sharp drop in the slope of the 246 

graph as compared with simulation on 247 

Boophilus decoloratus while 248 

equilibrium was gained on day  36 for 249 

the immunized under same conditions 250 

as with control Fig 2.  Similarly, a 251 

pooled simulation was done to 252 

compare between  vaccinated and  253 

control groups irrespective of the 254 

species in which differences between 255 

the tick population density form the 256 

slope of the graph where equilibrium 257 

was attained much faster Fig 4. The 258 

effect of climatic conditions on tick 259 

population in the field a temperature 260 

dependent simulation at 25ºC at 85% 261 

relative humidity was performed Fig 3.  262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

TABLE I:  Parameters and constants in the unvaccinated model 273 
 274 

Parameter B. decoloratus B. microplus 

Larvo_nymph moult                                                                   

θ 

0.91 0.91 

Numphal_ Adult moult (Male)                                                          

μ 

0.335 0.335 

Numphal_ Adult moult (Female)                                                       

μ 

0.335 0.335 

Decadal survival prob. Of male                                                        

P1 

0.35 0.35 

Survival prob. of Adult females                                                        0.5 0.5 

 275 

 276 
 277 
 278 
 279 
 280 
 281 
 282 
 283 
 284 
 285 
 286 
 287 
 288 
 289 
 290 
 291 
 292 
 293 
 294 
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TABLE II: Temperature dependent parameters in the unvaccinated model at different 295 
temperatures including 25

0
c as optimum for the two tick species 296 

 297 
 100C 150C 200C 250C 300C 350C 

 Bd Bm Bb Bm Bb Bm Bb Bm Bb Bm Bb Bm 

Pre_oviposition 

+  Oviposition 

period 

40 40 58 56 34 34 25 18.5 24 16 23 12 

Period in decade 4d 4d 6d 6d 4d 4d 3d 2d 3d 2d 3d 2d 

Cumulative 

Survival rate  

.9 .9 .9 .9 .9 .9 .9 .9 .85 .8 .8 .7 

Decadal 

Survival rate of 

females  n 

.7 .7 .78 .78 .7 .7 .63 .47 .61 .44 .59 .41 

Decadal rate of 

ovipositing 

females    

0 .0 .11 .11 .19 .19 .27 .42 .23 .35 .28 .28 

No. of eggs  g 0 0 1100 1000 2000 2500 2500 3000 2000 2500 1500 2000 

Incubation 

period 

100 100 100 100 55 40 26 30 20 18 20 19 

Period in decade 10d 10d 10d 10d 6d 5d 3d 3d 2d 2d 2d 2d 

Cumulative 

Hatchability 

0 0 0 0 .7 .7 .9 .9 .95 .95 .95 .95 

Decadal rate of 

delayed incub.k2 

.69 .69 .69 .69 .65 .6 .63 .63 .48 .48 .48 .48 

Decadal 

hatchability  h 

0 0 0 0 .04 .09 .26 .26 .46 .46 .46 .46 

Survival rate of 

Qa   m1 

.9 .9 .9 .9 .9 .9 .9 .9 .2 .2 .1 .1 

Surviv. Rate of 

Qb    m2 

.8 .88 .8 .88 .86 .86 .2 .2 .2 .2 0 0 

Host finding rate 

of Qb  s2 

.25 .25 .25 .25 .25 .25 .25 .25 .25 .25 0 0 

Host finding rate 

of Qc  s3 

.05 .05 .05 .05 .05 .05 .05 .05 .05 .05 0 0 

Survival rate of 

Qc  k3 

.8 .87 .8 .87 .78 .84 .16 .19 .16 .16 0 0 

 298 

 299 

 300 

 301 

TABLE III:  Parameters in the Vaccination Models 302 

Parameter Survival 

Probability 

Number 

of eggs 

Vaccine 

efficacy 

Reference  

Female ticks 
Control 

Female ticks 
immunized 

0.65 

 

0.38 

2500 

 

1525 

0 

 

0.61 

Odongo , 2007 

Female ticks 
Control 

Female ticks 
immunized 

0.5 

 

0.23 

4500 

 

720 

0 

 

0.84 

Garcia - Garcia et al. 

(2000) 

 

Mortality in eggs of 0.43 is constant for both species 303 

 304 
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Fig.1: Immunization with Bm86 and control groups of Boophilus microplus 305 
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Fig.2: Immunization with Bm86 and control groups of Boophilus decoloratus 312 
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Fig. 3: Simulation at different temperatures showing ticks population dynamics 339 
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 344 
 345 
TABLE IV: CONTROL AND VACCINATION TRANSITIONAL STATE MATRIX OF B.  346 
DECOLORATUS 347 
 348 
 L1 H1 X1 Y1 P1 O1 E1 Q11 Q12 Q13 

L1 0 0 0 0 0 0 0 0 0.25 0.05 

H1 0.91 0 0 0 0 0 0 0 0 0 

X1 0 0.335 0.35 0 0 0 0 0 0 0 

Y1 0 0.335 0 0 0 0 0 0 0 0 

P1 0 0 0 .5 0 0 0 0 0 0 

O1 0 0 0 0 0.63 0 0 0 0 0 

E1 0 0 0 0 675 0 0.63 0 0 0 

Q11 0 0 0 0 0 0 0.26 0 0 0 

Q12 0 0 0 0 0 0 0 0.9 0 0 

Q13 0 0 0 0 0 0 0 0 0.2 0.16 

 L2 H2 X2 Y2 P2 E1 E2 Q21 Q22 Q32 
L2 0 0 0 0 0 0 0 0.25 0.05 0.05 

H2 0 0 0 0 0 0 0 0 0 0 

X2 0.335 0.35 0 0 0 0 0 0 0 0 

Y2 0.335 0 0 0 0 0 0 0 0 0 

P2 0 0 0.29 0 0 0 0 0 0 0 

O2 0 0  0.47 0 0 0 0 0 0 

E2 0 0 0 400 0 0.51 0 0 0 0 

Q21 0 0 0 0 0 0.14 0 0 0 0 

Q22 0 0 0 0 0 0 0.9 0 0 0 

Q23 0 0 0 0 0 0 0 0.2 0.006 0.16 

 349 

 350 

 351 

 352 
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 353 

TABLE V. CONTROL AND VACCINATION TRANSITIONAL STATE MATRIX 354 
OF B. MICROPLUS 355 
 L1 H1 X1 Y1 P1 O1 E1 Q11 Q12 Q13 

L1 0 0 0 0 0 0 0 0 0.25 0.05 

H1 0.91 0 0 0 0 0 0 0 0 0 

X1 0 0.335 0.35 0 0 0 0 0 0 0 

Y1 0 0.335 0 0 0 0 0 0 0 0 

P1 0 0 0 0.5 0.47 0 0 0 0 0 

O1 0 0 0 0 1260  0.51 0 0 0 

E1 0 0 0 0 0 0 0 0 0 0 

Q11 0 0 0 0 0 0 0.14 0 0 0 

Q12 0 0 0 0 0 0 0 0.9 0 0 

Q13 0 0 0 0 0 0 0 0 0.2 0.19 

 L2 H2 X2 Y2 P2 E1 E2 Q21 Q22 Q32 

L2 0 0 0 0 0 0 0 0 0.25 0.05 

H2 0.91 0 0 0 0 0 0 0 0 0 

X2 0 0.335 0.35 0 0 0 0 0 0 0 

Y2 0 0.335 0 0 0 0 0 0 0 0 

P2 0 0 0 .23 0 0 0 0 0 0 

O2 0 0 0 0 0.63 0 0 0 0 0 

E2 0 0 0 0 400 0 0.63 0 0 0 

Q21 0 0 0 0 0 0 0.26 0 0 0 

Q22 0 0 0 0 0 0 0 0.9 0 0 

Q23 0 0 0 0 0 0 0 0 0.2 0.16 

 356 

 357 

 358 

 359 

DISCUSSION 360 
The relative influence of climate is 361 

often difficult to discern amongst the 362 

noise created by variations in other 363 

factors that are not directly climatic. 364 

To study the effect of vaccination on 365 

tick population, sub-models describing 366 

vaccination effect were added to 367 

population dynamic models (Lodos et 368 

al 1995, 1998; Labarta et al. 1996).   369 

The effect of vaccination with Bm86 370 

has been studied for several 371 

geographical locations in Australia and 372 

the Americas (de la Fuente et al., 373 

1995). Computer modelling has been 374 

used to study the ecology of Boophilus 375 

microplus under different climatic 376 

conditions (Dallwitz, 1987;  Jorge et 377 

al., 2000; Patarroyo et al., 2002;Lodos 378 

et. al., 1995, 1998) and Floyd et 379 

al.(1995) simulated the effect of a 380 

vaccine on tick populations, using 381 

TICK2 model (Dallwitz, 1987) with 382 

incorporated vaccination sub model. 383 

Considering the complexity of the tick-384 

host-environment relationship, it is 385 

nearly impossible to predict the effect 386 

of vaccination on field tick population 387 

without realistic models for tick 388 

population and the effect of 389 

vaccination on population dynamics. A 390 

Markov chain model was developed 391 

for the very first time to predict the 392 

efficacy of TickGard
®
 in a multi tick 393 

infested environment.  Parameters 394 

incorporated in the initial model as 395 

shown in (Table 1) served as control 396 

natural environment. The basic 397 

assumption in the model as it is in any 398 

model was that, the host resistance was 399 

same for both tick species at 25ºC with 400 

the relative humidity of 85%.  The 401 

efficacy of the anti tick vaccine 402 

TickGard ™ against B. decoloratus   403 

was 61% (Odongo, et. al., 2007) and 404 

B. microplus was 84% (Garcia – 405 

Garcia et. al., 2000) were used in 406 

vaccination models and were compared 407 

with the non vaccination model. These 408 

results and others given by (Lodos et. 409 

al., 2000) who developed models that 410 

show the effect of vaccination on the 411 

tick population dynamics using Bm86 412 

antigen proved that tick populations 413 

can be predicted and control strategies 414 

designed targeted at effectively 415 

eliminating the Boophilus species in 416 

areas which harbour the parasite. There 417 
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is also the need to further test these 418 

models by practically conducting field 419 

efficacy trials in areas or regions where 420 

these tick species co-exist. 421 

 422 
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