Poultry Science
94(E-Supplement 1)

Poultry Science Association
104th Annual Meeting
Abstracts

Presented

July 27–30, 2015
Louisville, Kentucky

Also contains abstracts from 2015 International Poultry Scientific Forum
January 26-27, 2015
ASSOCIATE EDITORS (2014–2015)

Poultry Science® (ISSN 0032-5791) is published 12 times per year (monthly). Periodicals Postage Paid at Cary, NC, and additional mailing offices. POSTMASTER: Send address changes to Poultry Science, Journals Customer Service Department, Oxford University Press, 2001 Evans Road, Cary, NC 27513-2009. Subscription information: Annually for North America, $613 (electronic), $675 (print), or $708 (electronic and print). Annually for Rest of World, £395/€486 (electronic), £434/€534 (print), or £457/€562 (electronic and print); single copies are $45. All inquiries about subscriptions should be sent to Journals Customer Service Department, Oxford Journals, Great Clarendon Street, Oxford OX2 6DP, UK, Tel: +44 (0) 1865-35-3907, e-mail: jnlscust.serv@oup.com. In the Americas, please contact Journals Customer Service Department, Oxford Journals, Great Clarendon Street, Oxford OX2 6DP, UK, Tel: +44 (0) 1865-35-3907, e-mail: jnlscust.serv@oup.com. The PSA membership fee for individuals is $120 and includes electronic access to Poultry Science. A print subscription for PSA members is available for $80 (US) or $107 (Rest of World). All inquiries about membership should be sent to Poultry Science Association Inc., 1800 S. Oak Street, Suite 100, Champaign, IL 61820-6974, Tel: 217-356-5285, e-mail: psa@assocqchq.org. Claims: Publisher must be notified of claims within four months of dispatch/order date (whichever is later). Subscriptions in the EEC may be subject to European VAT. Claims should be made to Poultry Science, Journals Customer Service Department, Oxford University Press, 2001 Evans Road, Cary, NC 27513, Tel: 800-852-7323 (toll-free in USA/Canada) or 919-677-0977, e-mail: jnlorders@oup.com.

Abstracts of the
Gaylord National Resort & Convention Center, National Harbor, Maryland
Poultry Science Association
Annual Meeting

SYMPOSIA AND ORAL SESSIONS

Monday, July 27, 2015

Student Competition: Environment and Management I	1–6 1
Student Competition: Extension and Instruction	7–8 3
Student Competition: Metabolism and Nutrition: Amino Acids	9–15 4
Student Competition: Metabolism and Nutrition: Feed Additives I	16–24 7
Student Competition: Metabolism and Nutrition: Nutrition I	25–33 10
Student Competition: Microbiology and Food Safety	34–38 13
Student Competition: Physiology, Endocrinology, and Reproduction	39–44 15
Student Competition: Molecular and Cellular Biology	45–48 17

Tuesday, July 28, 2015

Student Competition: Animal Well-Being and Behavior	49–62 18
Student Competition: Environment and Management II	63–72 23
Student Competition: Immunology, Health, and Disease: Immunology	73–80 27
Student Competition: Metabolism and Nutrition: Enzymes	81–91 30
Student Competition: Metabolism and Nutrition: Nutrition II	92–103 34
Student Competition: Metabolism and Nutrition: Vitamins and Minerals	104–116 38
Student Competition: Processing and Products	117–127 42
Student Competition: Metabolism and Nutrition: Feed Additives II	128–132 46
Student Competition: Genetics	133–138 48
Genetics	139–143 50
Metabolism and Nutrition: Feed Additives I	144–153 52
Metabolism and Nutrition: Nutrition I	154–166 55

Wednesday, July 29, 2015

Microbiology and Food Safety	167–174 59
Extension and Instruction	175–180 62
Immunology, Health, and Disease: Immunology I	181–185 64
Environment and Management I	186–199 66
Metabolism and Nutrition: Feed Additives II	200–212 71
Metabolism and Nutrition: Nutrition II	213–225 75

Thursday, July 30, 2015

Animal Well-Being and Behavior	226–236 79
Immunology, Health, and Disease: Immunology II	237–248 82
Metabolism and Nutrition: Enzymes I	249–260 86
Metabolism and Nutrition: Feed Additives III	261–267 90
Processing and Products: Processing and Products II	268–273 92
Metabolism and Nutrition: Enzymes II	274–277 94
Metabolism and Nutrition: Amino Acids	278–283 96
Metabolism and Nutrition: Vitamins and Minerals	284–292 98
Pathology	293–300 101
Physiology, Endocrinology, and Reproduction	301–308 103
POSTERS

Animal Well-Being and Behavior ... 309P–314P 106
Environment and Management .. 315P–332P 108
Extension and Instruction ... 333P–335P 114
Genetics .. 336P–338P 115
Immunology, Health, and Disease: Immunology 339P–360P 116
Metabolism and Nutrition: Amino Acids ... 361P–376P 122
Metabolism and Nutrition: Enzymes ... 377P–400P 127
Metabolism and Nutrition: Feed Additives .. 401P–440P 134
Metabolism and Nutrition: Nutrition ... 441P–460P 145
Metabolism and Nutrition: Vitamins and Minerals 461P–469P 151
Microbiology and Food Safety .. 470P–479P 154
Molecular and Cellular Biology ... 480P–488P 157
Pathology ... 489P–492P; 296P 160
Physiology, Endocrinology, and Reproduction .. 493P–510P 162
Processing and Products ... 511P–521P 168

Author Index .. 171
Subject Index .. 181
The effects of dietary supplementation of \(\alpha \)-methionine and 2-hydroxy-4-(methylthio) butanoic acid (HMTBa) on broiler meat quality. Ji Yang Fang\(^1\), Gerardo Casco\(^2\), Rocky Latham\(^3\), Jason Lee\(^2\), Sriperm Sriper\(^1\), Rob Shirley\(^3\), and Christine Alvarado\(^1,2\).

1. Dept. of Nutrition and Food Science, Texas A&M University, College Station, TX; 2. Dept. of Poultry Science, Texas A&M University, College Station, TX; 3. Adisseo USA, Alpharetta, GA.

The objective of this study was to define the effect of digestible total sulfur amino acid (dTSAAn) levels on meat quality. In a basal diet that contained a digestible lysine level of 0.90%, \(\alpha \)-Met was supplemented into a basal diet at 0, 0.197, or 0.395%; this resulted in dTSAAn levels of 0.491, 0.687, and 0.882%. Supplementing HMTBa into the basal diet at 0.222%, a dTSAAn of 0.687% was achieved. The 4 respective treatments were fed to male Cobb 500 × MX broilers from 35 to 49 d of age (13 replicate pens/treatment; 21 birds/pen). From each treatment, 6 birds per replicate were slaughtered and deboned on d 50 (n = 312). Boneless and skinless breasts were measured for drip loss (DL), cook loss (CL), color (L*, a*, b*), pH, and water holding capacity (WHC). In addition, DL and CL were determined on skinless, bone-in thigh meat. All data were analyzed using ANOVA, with LSMeans set at a \(P \)-value of < 0.05. While increasing the level of dTSAAn did not affect incidence of woody breast \((P > 0.05) \), samples that had an incidence of “woody breast” were included in the data analysis because it has a significant effect \((P < 0.05) \) on meat quality measurements (breast meat DL and CL). WHC was significantly higher for the dl-Met treatments, feeding 0.687% dTSAAn resulted in the lowest L* value when compared with the dTSAAn treatments of 0.491% \((P < 0.05) \) and 0.882% \((P > 0.05) \). WHC was significantly higher for the dTSAAn treatments of 0.882% and 0.687%. No significant difference was found in the meat quality measurements among the 3 dTSAAn levels. No significant difference in DL, CL, color, and pH was identified between the 2 methionine sources, dl-Met and HMTBa at 0.687% dTSAAn. In conclusion, supplementing either source of methionine at a dTSAAn level of 0.687% resulted in breast meat with a lower L* value (darker color meat) and an overall superior meat quality.

Key Words: dl-Met, HMTBa, meat quality, woody breast

Hydroxy-selenomethionine contributes to improve color stability of turkey meat. Mickaël Briens\(^*1\), Marion Faure\(^2\), Florian Coulignon\(^1\), Jean Garet\(^3\), Thierry Maucotel\(^1\), Nathalie Tommasino\(^3\), Gatelier Philippe\(^2\), Denis Durand\(^2\), Pierre-André Geraert\(^1\), and Yves Mercier\(^1\).

1. Adisseo France S.A.S., Antony, France; 2. INRA, Saint-Genes-Champanelle, France; 3. L.D.C., Sable, France.

Selenium (Se) is a trace element involved in the cellular Redox regulation and is active through selenoproteins, such as, glutathione peroxidases, thioredoxin reductases or methionine sulfoxide reductase B. The present study aimed to evaluate the effect of hydroxy-selenomethionine (HMSeBA) on the color stability of turkey red meat in standard packaging conditions. A total of 72 male turkeys (Grade Maker), 83 d old, were divided into 2 treatments as follow: a control diet (20 mg/kg of vitamin E and 0.3 mg/kg of Se from sodium selenite) and a test diet (control diet supplemented with 0.2 mg/kg of Se from HMSeBA). After 4 wk of dietary supplementation, thigh meat parts were processed the day after animal slaughtering. Enzymatic activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) were measured as well as vitamin A and E contents, pHu, glycolytic potentials and iron (free and heminic) content. The meat malondihaldehyde (MDA) and protein carbonyl contents were measured at 8 and 13 d after slaughter. A visual score was daily attributed to the meat portions from 1 (no discoloration) to 4 (at least 1/3 of meat discolored) during 13 d. A score above 3 indicated a non-saleable product. The meat GPx activity was higher \((P < 0.05) \) for the test group compared with control. The CAT activity, vitamin A, E and iron contents were not affected by the diets. After 13 d of storage, meat from test group had lower MDA content compared with control \((P < 0.05) \), but the protein carbonyl content was not affected by dietary treatments. The mean visual score was lower \((P < 0.05) \) for the test group compared with control group at 8 and 13 d of storage. Thus, on a storage period of 15 d, HMSeBA enabled to slow down discoloration process. It resulted in a significant improvement of visual score at d 10, corresponding to an extra day at higher quality grade. Those results indicated a positive effect of HMSeBA supplementation in turkey diet to contribute to improve meat color stability in standard storage conditions.

Key Words: selenium, hydroxy-selenomethionine, turkey meat quality

Effect of onion extract on oxidative stability and physico-chemical and sensory properties of marinated broiler meat during refrigerated storage. Olubunmi O. Oluosila\(^*\), Kehinde A. Tella, and Olusegun D. Oshibanjo, University of Ibadan, Ibadan, Oyo State, Nigeria.

Onions are consumed for their flavor and health benefits. These beneficial properties seem to strongly relate to the high content of sulfur compounds and flavonoids, which act as antioxidants, antibiotics, and anticancerogens. This study investigated the antioxidative effect of onion extracts on quality and sensory properties of broiler meat as affected by refrigerator storage. Fresh average-sized white onion bulbs \((0.58) \) were obtained, peeled, washed, chopped, and oven-dried at 40°C until constant weight was reached. Then, 500 mL of methanol was used to soak 100 g of the oven-dried onion for 24 h. Twelve broiler chicken \((1.5 ± 0.2\) kg live weight of 56 d age) were obtained, and 800 g of the breast muscle was marinated in brine solution and onion extract. The marinade consisted of 16 mLs of onion extracts and 14 g of table salt added to 4 L of water. Marinated solution was kept at 4°C before breast meats were immersed. Marinated meat was pan fried to an internal temperature of \(77°C ± 3°C \) for 15 min after 11hrs of marination and committed to completely randomized design. Moisture content was significantly high on the 4th day. Proximate composition increased with days of storage with d 2 having the highest mean value (31.88%). Days 2 and 4 had the same percentage of ether extract. pH was significantly high on d 2 having the highest mean value (31.88%). Yeast, Mold and Bacteria were not recorded on the first day but on the 4th day. Proximate composition increased with days of storage with d 2 having the highest mean value (31.88%). Days 2 and 4 had the same percentage of ether extract. pH was significantly high on the 4th day. Proximate composition increased with days of storage with d 2 having the highest mean value (31.88%). Days 2 and 4 had the same percentage of ether extract. pH was significantly high on the 4th day.

Key Words: Onion extract, broiler breast meat, physico-chemical properties

273 Effect of onion extract on oxidative stability and physico-chemical and sensory properties of marinated broiler meat during refrigerated storage. Olubunmi O. Oluosila\(^*\), Kehinde A. Tella, and Olusegun D. Oshibanjo, University of Ibadan, Ibadan, Oyo State, Nigeria.