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ABSTRACT

This article obtained the proof of the optimal investment strategy and corresponding
rewards for a class probabilistic stationary investment problems, using backward dynamic
programming recursive approach. In the sequel, the article formulated nontrivial extensions of
the results to a larger dynamic class for practical and realistic considerations. The recursions
were based on conditional probabilities and the proofs were achieved by deft deployment of
probability axioms, set-theoretic facts, optimization and inductive principles. The extensions

reflected and demonstrated consistency with the base results.
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1. Introduction

The concept of dynamic programming is largely based on mathematical recursions and
the following Richard Bellman’s principle of optimality as variously stated by Winston [1]:
“Given the current state, the optimal decision must not depend on previously reached states or
previously chosen decisions”, Taha [2]: “Future decisions for the remaining stages will constitute
an optimal policy regardless of the policy adopted in previous stages”, Verma [3]: ”An optimal
policy (set of decisions) has the property that whatever be the initial stage and initial decisions,
the remaining decisions must constitute an optimal policy for the state resulting from the first
decisions.”, Gupta and Hira [4]: “An optimal policy (a sequence of decisions) has the property

that whatever the initial stage and initial decisions are, the remaining decisions must constitute
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an optimal policy with regard to the state resulting from the first decision.” In other words,
suboptimal decisions taken at previous stages of a process do not preclude optimal decisions for
the remaining stages of the process.

Probabilistic dynamic programming is a branch of Dynamic programming characterized
by the uncertainty of states and returns at each stage. It arises for the most part in the treatment of
stochastic inventory models and in Markovian decision processes. According to Wagner [5], the
proper structuring of a model must take into account the intermingled sequence of decisions and
emergent information about the exact values of the random elements. As asserted by [1], “in a
probabilistic dynamic programming the decision maker’s goal is to minimize expected (or
expected discounted) cost incurred or to maximize expected (or expected discounted) reward

earned over a given planning horizon.

The current investigation will use probabilistic dynamic programming to focus on the
class of stationary investment problems, as formulated but not proved by [2]. Review of
literature reveals the nonexistence of any formal proof of the prescribed investment strategy in
[2]; needless to say that no extension of the formulation has been attempted by any author. This
article fills these yawning gaps. The article will prove the results in [2] and obtain nontrivial
extensions of those results to the dynamic class of investment problems, thus adding to the
existing body of knowledge. For generalities on dynamic programming, see [1-5] and Taha [6].
For specialization of probabilistic dynamic programming to probabilistic differential dynamic
programming- a powerful trajectory optimization approach with uncertainty in states and returns-

see a recent paper by Pan and Theodorou [7].

2. Materials and Methods
2.1 The Stationary Investment Problem with Uncertainty

An individual wishes to invest up to C dollars in the stock market over the next n (years
or periods). The investment plan calls for buying the stock at the start of the year (period) and
selling it off at the end of the same year (period). Accumulated money may then be reinvested (in
whole or part) at the start of the following year (period). The degree of risk in the investment is
represented by expressing the return probabilistically. A study of the market shows that the

return on investment is affected by m (favourable or unfavourable) market conditions and that

condition k vyields areturn r,_ with probability p,, k €{1,2,...,m}. How should the amount C be
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invested to realize the highest capital accumulation at the end of n time periods? Prove that the

prescribed investment strategy is optimal.

2.2 Definition of investment capacities and decision variables

X, = Amount of funds available for investment at the start of period i. Note that x, =C.
y. = Amount actually invested at the start of period i. Clearly, y, < x..

2.3 Elements of the Dynamic Programming Model

Stage i is represented by period i.
The alternatives at stage i are given by y,.
3. The state at stage i is given by x;.

24 Definition of the Backward Dynamic Programming Recursions

Let f.(x)=maximum expected funds for periods (years) i,i+1,...,and n, given x at the
start of period i.

For market condition k we have the following relationship between stages i andi+1

Q) X,y = X —Yi + @+r)y,
unutilized funds in period i return on the 1-period investment
(carried over to period i+1)
=X+

Given that market condition k occurs with probability B;ke{12,...,m}
(m market contigencies), the maximal expected funds, f (x ) for periods i,i+1,...,n given that
X, monetary amount is available for investment at the start of periods i is defined recursively by
reasoning as follows:

Expected fund (accumulated fund)from the beginning of period i to the end of period i is the

expected available fund, x;,, at the beginning of period i +1; x,,, = X, + 1, y; , with probability p, if
market conditon k occurs. Therefore p, f,,,(X,,) is the expected fund for periodsi,i+1,...,n, given
market condition k. Hence

fi (Xi) = Orpy%_ {Z Py fi+l(Xi+1)} = Mmax {Z Py fi+1(Xi + 1 Yi); i=12,..., n}
Rl = k=L

0<y; <X
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f..1(X,.1) = X..;, since no investment occurs at the end of period n and therefore no further funds

(0 funds) are expected. x_, is the total availability at the beginning of period n+1 or at the end

of period n, which is preserved.

m
SetT :Z P.r, : the expected market return from the m market contingencies.
k=1

Then the following theorem prescribes an optimal investment strategy.

3. Results and Discussion

3.1 Theorem 1: Optimal policy prescription for Stationary Probabilistic Investment
Problems

For the general investment problem with m market conditions and horizon length n,

{xi, if F<0
fi(xi): ;

Q+r)"*'x,, if T>0
. . |0,ifr<o0
Yi(X) =Y, = X, if F>0

where y is the optimal amount invested at the start of period i.

In other words, for i e{L,2,---,n},

f (x) = x sgn(max{l-T7,0}) + (L+ )" x. sgn(max{r, 0}); y; = x, sgn(max{r, 0}).
Proof

The proof is by mathematical induction on i. Computations are initiated from period n (stage n),

Thus,
% )—Omax {Z P M(XM)} = max {Z Py n+1} {Z (X, +1y, }
<Yn<* |43 <Y, <X, 0<y, <x, —
:OQ%H{Xn;pk (Z pkrk]y"} o, X+ T Y, =X, n t max {Fy.}

The maximum value occursat y, =0, if T<0 andat y, =x_,if 7>0.
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Therefore
. |0, if Fr<0
Y, =

So the theorem is true for i =n.

Assume that the theorem is valid for j<i<n-1for some positive integer j>1.Then in

particular,
. 10, 1f T<0
YiZ1x,ifr>0
x; iIf T<0
i) (1+F)”+l_J X, if 7>0

f,_1(X;;) can now be effectively examined.

. m . m Xj,ifFSO
(X, )= max (X)) [= max )
) =, (; Pty ’)j S 2P @+7)"Ix, if T>0

<Yj1Xj4 Py

Zm: P (X + 5 Y ). if T<O

= max k=t
<YiaSXjia | _ i A
> p(1+T) 1J(xj1+rkyj_1) if 7>0
k=1
X, +Ty;, if T<0
= max —\n+1-j
0 | (L4T)" (X + Ty, 4 ), if T >0
. 0 if T<O0
= Vi X, ifF>0
X4, If T<0 Xi1
=f (X, )= . =f (X, )= .
a(x) (L+F)" (1+7)x,, (%54 (1+F)" P x ,, if F>0

Therefore, the theorem is valid for i = j—1 and hence valid for all 1<i<n. This completes the

proof.
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The ensuing theorem extends theorem 1 to the complex case where the probabilities and
market returns vary from period to period; that is, for arbitrary number of different market
conditions for each period with different probabilities and corresponding returns.

3.2 Theorem 2: The Optimal Policy Prescription for Dynamic Probabilistic Investment
Problems

For the general investment problem with an arbitrary number of different market conditions for
each period and corresponding returns, define the following:

m, = Number of market conditions in yeari
n=Horizon length
r, = Market return for market condition k; in period i (stage i)

p, = Probability of market condition k; in period i

Fi:ipkirki,i e{l- nER ={F, R T L el 2 n=15R, =T,

k-1
Ri={TeR:T>0};R ={FeR;:T<0}. (Clearly R, =R UR" andR" "R =Q)

Then subject to the standing hypotheses, the optimal investment strategy and the corresponding
optimal return are prescribed as follows:

(a) yi*:xisgn(max{ﬁ,o}),ie{l,2,m,n}
(b) f(x)= ][] @+F)x,if R;'is nonempty

rert
(© f.(x)=x,ifif R"isanull set (Equivalently R, =R,"),
where y; is the optimal investment strategy at the start of period i;i e{1,2,...,n}. f.(x) is the

maximal expected funds for periods i,i+1,...,n, given that the amount X, is available for
investment at the start of period i.

Proof of theorem 2

The dynamic programming recursive proof is inductive and is initiated from stage n.

3.3  Stage n Computations
X=X +5 Yiie{l,2,...,n}

= f,(%,) = max {Zp (%, +x, yn)}
0<y, <%, k1 kn n

0<y, <%, 0<y, <X,
K, =:

= max {xn+zl(pknrkn)yn} = max {x,+Ty,}= X, + max {Ty,}
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and

So the theorem is valid fori =n

3.4  Stage n-1 Computations

Xig =X + 1 yi;1€il,2,.
m, My X s if _n <0
=f.,(x,)= = max p _ L
1 0<yn 1<Xn 1 { Z; kn-1 } USTRES o) k;l kn-1 (1+ I, ) X if r, >0
My
P, X, if [,<0 Z P, . (xn_1 +rkn71yn_1), if 7 <0
Kna=1 Ky q=1
= max ' = max *
0<Yp1<Xnq My 0<Y, 1<% o
p_ (1+T)x,,if [0 Z p_ (1+T) (xnfl+rkn4ynfl),|f r >0
kpg=1 kn1=1

_ Xn—l + yn—an—l’ If _n < O
0syoa<xos | | (14T, ) X +(1+

0if T,<0and I, <0
X, 15 an >0and 1 >0
= Jna x _,, if T >0and T <0
0,if nlsOand [
. 0if 7, <0
= Jm T {xn_l, if T,>0

= Yo = Xn—1sgn(max{rn—1’0})
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1+T ) (147, ) Xy, if T, T, >0
n)

o If T, <0, >0

[N
—+
"I:

\./><

X, ,1fT7 ;>0 7 <0

Therefore, the theorem is also valid for i=n-1.

3.5 Stage n — 2 Computations

X1 =X +6 Yisie{l,2,...,n}

fn—Z(Xn—Z): ma£x Z pkn2 n-1 X—1)

knz=1
Xn—l’ If rn—l’ rr‘| SO
. mzj ) (1+7)(A+TF ) X,y if T, T, >0
0YooKe [y e (14T )Xy, if T, <0, F, >0
(1+7 )%, if £, >0,F, >0
My
P, (xH +r ynfz), if r,, 7 <0
knfz:
My
. (1+7)(1+T, 1)(xn 2T yH),lf r,,r>0
K, ,=1
= max "
0<y, 2<Xy» h-2
P, . (1+T, )(x oY 2) if T,<0,T >0
kno=
My_p
P, . (1+7_ )(xn AR 2) if T,>0,T <0
knz=
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0, T, 7, <0
X _,if T, >0 F, F<0
AP L AP AP A
. o,ifr ,<0, 17,17 >0
ZY02T) gt r,<0,7,<0,T >0
X, ,,if T ,>0,T ,<0,T >0
0,ifr,<0,17,>0T <0
X, 0f 7 ,>0,T,>0,T <0

) 0,if T, <0
:> =
Yoo =y it >0

=X, ,S0Nn (maX {Fn—Z ' O})

ol >0, ,, T <0
(1+7 ) (147, ) X, if F_, <0, T, T >0
(L) (AT ) (14T ) X, i Ty, T, T, >0
= fn—z (Xn—2) = — _ —_ _

(1+7%)x,,, if F,_,<0,F <0, T, >0
(1+7)(1+TF, )X, if 7, >0, F_ <0, T, >0
(1+7_,) %, if 7, <0, >0,T <0
(1+7_)(1+T, )X, if T, >0, >0,F <0

X, if Rl , =0
= T, (%)= [T (1+7)x,, elsewhere

Pt
reRi_

Therefore the theorem is also valid for i =n—2.
3.6 Stages n -3 tol Computations

Assume that the theorem is valid for j<i<n-3 for some positive integer j>1. Then in
particular,
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f,_1(X;;) can now be effectively examined.

71(XJ 1) o<y, 1<le£ z pk 1fJ(X )

kja=1

Zpk ( yjl) if R =R,
= max o
<YjaSXja
Z pk“H 1+F)(x LY, l),lf R, @
_1—1 I'ER

= Oggr:i)ij?l H(1+F)(x 1LY, 1) if ﬁ;;t@

= _Bt
reRJ-

q|

O
—
~—

= ¥'j1 =%, 5gn (max (T,

= ()= H (1+F)x,,, if F,, <0, and ﬁ; =

Xy, if R, =R, (ie.if R, =2 )
= () =TT @ Fx, L if R, 20

Therefore, the theorem is valid for i = j—1 and hence valid for all 1<i<n. This completes the

proof.

3.7  Corollary to Theorem 2

Ifm =m, andk =k, V ie{L2,...,n}, then
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This is consistent with theorem 1.

Proof of the corollary

m=mandk =k, Vie{l,2,---,n}= p, = p,

i z =T =R ={F>0LR ={r<0}=R; ={r >0,¥pe iy},

R;_{‘ <0,vpefi-,njj=

where S| denotes the cardinality of an arbitrary set S; R, # @ < R =@ < R, =R;;

RY

=n+1-iand [R;|=00r [Ri|=n+1-i and |R/|=

Ri#0 <R =0<R =R = [[(1+F)x =(1+F)"" ' x; "if Ry #@" <" if F>0"

I’ERJr

"if Ry =@"<"if T<0". Clearly, (1+ )”*1'x.=f[(1+r)x.

i i
p=i

. |0, if T<0
i, if >0,

This concludes the proof of the corollary.
Problem 1

Obtain the optimal investment strategy given the following pertinent balanced data.

Table 1: Market returns and associated probabilities for years 1-4

C = $10,000
Year i rl r2 r3 pl p2 p3
1 2 1 0.5 0.1 0.4 0.5
2 1 0 -1 0.4 0.4 0.5
3 4 -1 -1 0.2 0.4 0.4
4 0.8 0.4 0.2 0.6 0.2 0.2
Solution
n=4,m =m=3,1,=085T,=-011,=0, and 1, =0.6.

It follows from theorem 2 that
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Y. =%, ¥:=0, y,=0,y, =x =$10,000.00;
f,(%,) =(1+7,) X, =1.6%,, f,(x;) =(1+TF, )%, =1.6%;, f,(x,) =(1+F,)X, =1.6x,,
f,(x) = (1+Fl)(1+F4)xl =1.85(1.60)x, = 2.96x, = $29,600.00.
3.8  Optimal Investment Policy
The optimal solution calls for investing all available funds at the beginning of years 1 and

4 and none at the beginning of years 2 and 3. The accumulated funds at the end of the 4™ year is
f,(x) =$29,600.00.

Problem 2: Obtain the optimal investment policy given the following pertinent dynamic data.

Table 2: Market returns and associated probabilities for years 1-10

Year Market Returns Associated Probabilities
i
1 2 1 0.5 0.1 0.3 0.2 0.25 0.15
2 1 0 -1 0.4 0.4 0.2 0.1 0.15 0.15
3 4 -1 -1 0.02 0.14 0.24 0.4 0.2
4 0.8 0.4 0.2 0.1 0 0.3 0.2 0.2 0.2 0.1
5 0.7 0.5 1 -1 0.1 0.2 0.2 0.2 0.3
6 3 -1 0.05 0.2 0.2 0.2 0.35
7 0.9 0.7 0.2 -1 1 0.15 0.2 0.2 0.4 0.05
8 1.5 1 0.6 0.3 0.2 0.2 0.2 0.1
9 -1 0.5 0.4 0.6 0.2 0.1 0.1 0
10 0 1 1.5 0.35 0.2 0.2 0.2 0.05
Solution:
Table 3: Table of Computed relevant values
Year
| 5 6 7 8 9 10
r, 0.17 -0.05 -0.035 0.77 -0.46 0.50
YT Xs 0 0 X 0 X0
f.(x,) ie{g’[sj}(nﬁ)xs A+T)A+E)x | A+T)A+TIX | @+ F)A+Px A+T,)x, A+T7,)x,
= 3.10635x, 2.655x, 2.655x, 2.655x, 1.5x%, 1.5x,
Year
I 1 2 3 4
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T, 0.6 0.36 -0.30 0.38
Y, x, =10,000 X, 0 X,
f(x 1+T7 1+ T)X (1+1)x A+T)x
I( I) is{lo,ls_,sl,zt,z,l}( I)Xl is{lg,m}( I) ’ ie{lg;[' 54} i ie{l(l;[' 54} i
= 9.327996288x 5.82999768x, 4.286763X, 4.286763x,

Therefore, the optimal objective value is 93279.96288 ~ $93, 279.96

3.9 Optimal Investment Policy Prescription

Invest all available funds at the beginning of years 1, 2, 4, 5, 8 and10 and none at all, at the
beginning of years 3, 6, 7 and 9. The expected accumulated funds at the end of the 10 years
= f,(x,) =$93,279.96.

4. Conclusion

This article furnished the proof of the optimal investment strategy and optimal return for a class
of investment problems with stationary returns under uncertainty, using the principle of
mathematical induction, as suggested by [2]. The work went much further to extend the results to
a much larger class of problems of the complex dynamic class, where the probabilities and
market returns vary from period to period; that is, for arbitrary number of different market
conditions for each period with different probabilities and corresponding returns. The
unprecedented extension and optimal policy prescriptions are encapsulated in theorem 2, which
is the ‘icing on the cake’. The results circumvent the inherent tedious and prohibitive
computations associated with dynamic programming formulations and may be optimally
appropriated for sensitivity analyses on such models. Finally the article provided two illustrative

problems for the optimal policy prescription, with respect to the dynamic class.
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