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ABSTRACT 
 

Aim: This research article aimed at formulating and designing an Excel automated solution-based 
algorithm for the optimal policy prescriptions and the corresponding returns for all feasible nonzero 
starting ages in one fell swoop, for a class of equipment replacement problems with stationary 
pertinent data.  
Methodology: The aim was achieved by the exploitation of the structure of the states given as 
functions of the decision periods, and the use of starting age index one, in age-transition dynamic 
programming recursions, combined with dexterous reasoning regarding the implicit dependence of 
the dynamic programming recursions on stage numbers. Finally, the article deployed the template 
to obtain alternate batch optimal replacement strategies for some problem instances, with horizon 
lengths of 2 to12 years, and the full set of nonzero starting ages. 
Results: The investigation revealed that  if  m  is a fixed replacement age in a base problem with 
horizon length ,n and a single starting age { }1

1, 2, , ,t m∈ L  then the optimal solutions and 
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corresponding rewards for the 
2
-n  stage problem from stage 

2
1 n n+ −  to stage 

2
n  coincide with 

those of the base problem, not only for the single starting age, but for the entire set of feasible 

nonzero starting ages in stage 
2

1 n n+ −  of the 
2
-n  stage problem. By an appeal to the structure of 

the states at each stage and the deployment of  the preliminary starting age 
1

1t =  master stroke  in 

the
2
-n  stage problem, the optimal policy prescriptions and rewards for the base problem for the full  

set { }1, 2, ,mL  of feasible starting ages coincide with those of  the 
2
-n  stage problem from stage 

2
1 n n+ −  to stage 

2
,n  resulting in m  different problems being solved at once.  

Conclusion: If 
2 2
, such that 1 ,n n n n m< + − ≥  then * ( ), ( )

j j j j
D s f s are stage j  optimal decisions and  

reward from the template with horizon length 
2 2 2
, for { 1 , , }n j n n n∈ + − L  if and only if  

2

* ( )
j n n j

D s+ −

2

and  ( )
j n n j

f s+ −  are the corresponding optimal decisions  and reward  in stage 
2

j n n+ −  for the 

template with  the horizon length n . 
 

 
Keywords: Age transition diagrams; age transition dynamic programming recursions; batch 

automation of optimality results; decision period; decision symbols; equipment 
replacement problems; one fell swoop; pertinent data, set of feasible nonzero starting 
ages; sensitivity analyses. 

 
1. INTRODUCTION 
 
The Equipment Replacement Problem is an area 
of acute research need and of considerable and 
diverse research interests. Every equipment 
undergoes wear and tear and is subject to 
obsolescence with increasing time, resulting in 
deterioration and compromise in its performance 
characteristics. The need for restorative 
remediation becomes imperative. However, the 
associated rising operating and maintenance 
costs, as well as the decreasing salvage values 
and revenue generation capacity necessitate the 
replacement of the equipment at the appropriate 
time at some trade-in value. Therefore optimal 
replacement decisions must be made to optimize 
the returns. 
 
Consider the problem of researching an optimal 
Equipment Replacement policy over an n - 
period planning horizon. At the start of each year 
a decision is made whether to keep the 
equipment in service an extra year or to replace 
it with a new one at some salvage value. Fan          
et al. [1] remarked that the primary function of 
equipment managers is to replace the right 
equipment at the time and at the lowest cost. 
They went on to discuss among other things, the 
opportunities and challenges associated with 
equipment replacement decision making. 
Fallahnezhad et al. [2], presented an optimal 
decision rule for minimizing total cost in 

designing a sampling plan for machine 
replacement problems using dynamic 
programming and Bayesian inferential 
approaches. The cost of replacing the machine 
and the cost of produced defectives were 
factored into the model, and the concept of 
control threshold policy was applied in the 
decision rule as follows: If the probability of 
producing a defective exceeded the control 
threshold, then the machine was replaced, 
otherwise the production system would be 
deemed to be in a state of statistical control and 
production would go on uninterrupted. Finally, 
the paper presented a numerical example as well 
as performed sensitivity analysis to illustrate the 
application of their result. Zvipore et al. [3] 
investigated the application of stationary 
equipment replacement dynamic programming 
model in conveyor belt replacement using a Gold 
mining company in Zimbabwe as a case study. 
Their findings revealed that conveyor belts 
should be replied in the mining system on a 
yearly basis and concluded that equipment 
replacement policy for conveyor belts is a 
necessity in a mining system, so as to achieve 
optimum contribution to the economic value that 
a mining system might accrue within a period of 
time. Fan et al. [4] formulated a stochastic 
dynamic programming-based optimization model 
for the equipment replacement problem that 
could explicitly account for the uncertainty in 
vehicle utilization. 
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As remarked by Taha [5], “the determination of 
the feasible values for the age of the machine at 
each stage is somewhat tricky”. The latter went 
on to obtain the optimal replacement ages using 
network diagrammatic approach, with machine 
ages on the vertical axis and decision years on 
the horizontal axis. In an alternative time 
perspective approach, Winston [6] initiated the 
determination process for the optimal 
replacement time with network diagrams 
consisting of upper half-circles on the horizontal 
axis, initiating from each feasible time of the 
planning horizon and terminating at feasible 
times, with the length of successive transition 
times at most, the maximum operational age of 
the equipment. Sequel to this, Winston [6] 
formulated dynamic recursions as functions of 
the decision times, the corresponding feasible 
transition times, the problem data and the cash-
flow profile. Unfortunately network diagrams are 
unwieldy, cumbersome and prone to errors, 
especially for large problem instances; 
consequently the integrity of the desired optimal 
policies may be compromised. Verma [7], Gupta 
& Hira [8] used the average annual cost criteria 
to determine alternative optimal policies and the 
corresponding optimal rewards in a non-dynamic 
programming fashion. Gress et al. [9] modeled 
the equipment replacement problem using a 
Markov decision process and a reward function 
that can be more helpful in processing industries. 
Unfortunately, the key issues of large-scale 
implementation and sensitivity analyses were not 
discussed by the afore-mentioned authors. A 
new impetus was provided for sensitivity 
analyses and implementation paradigm shift by 
Ukwu [10], with respect to optimal solutions to 
machine replacement problems. Ukwu [10] 
pioneered the development of computational 
formulas for the feasible states corresponding to 
each decision year in a certain class of 
equipment Replacement problems, thereby 
eliminating the drudgery and errors associated 
with the drawing of network diagrams for such 
determination. Ukwu [10] went further to design 
prototypical solution templates for optimal 
solutions to such problems, complete with an 
exposition on the interface and solution process. 
Ukwu [11] extended the formulations and results 
in Ukwu [10] to a class of machine replacement 
problems, with pertinent data given as functions 
of machine ages and the decision periods of the 
planning horizon. By restructuring the data in 
three – dimensional formats Ukwu [11] 
appropriated key features of the template in 
Ukwu [10] for the extended template. Finally 
Ukwu [11] solved four illustrative examples of the 

same flavour that demonstrated the efficiency, 
power and utility of the solution template 
prototype. Ukwu [11] pointed out that the 
template could be deployed to solve each 
equipment replacement problem in less than 10 
percent of the time required for the manual 
generation of the alternate optima. However a 
major draw-back of the templates in Ukwu         
[10,11] is that for any problem instance, the 
inputs of the states and stage numbering are 
manually generated. Moreover, the templates 
require row updating of the formulas for the 
optimal criterion function values for problems of 
larger horizon lengths. Evidently this functionality 
needs to be improved upon for more speedy 
solution implementations, especially for practical 
problems of long planning horizons. Ukwu [12] 
used the state concept to obtain the structure of 
the sets of feasible replacement times 
corresponding to various decision times, in 
equipment replacement problems, thereby 
obviating the need for network diagrams for such 
determination. It went further to undertake novel 
formulations of the equipment replacement 
problems, incorporating cardinality analyses on 
the feasible transition states for each feasible 
time. Furthermore, the article designed solution 
implementation templates for the corresponding 
dynamic programming recursions. These 
templates circumvent the inherent tedious and 
prohibitive manual computations associated with 
dynamic programming formulations and may be 
optimally appropriated for sensitivity analyses on 
such models in just a matter of minutes. Ukwu 
[13] examined the effects of different planning 
horizons, with equipment replacement age fixed, 
in the Excel automated solutions in [12], to a 
class equipment replacement problems with 
stationary pertinent data. The investigation 
revealed that if the replacement age is fixed, and 

1 2andn n are any two horizon lengths with 

1 2n n< , and * , ( )jp g j are stage  j  optimal 

decision and  reward from the template with  
horizon length 2 2 1 2, for { 1 , , },n j n n n∈ + − L

then ( )*
1 2 1 2  gjp n n and j n n+ − + −  are the 

corresponding optimal decision  and reward  in 
stage 1 2j n n+ −  for the template with  the 

horizon length 1.n  Moreover the corresponding 

optimal rewards are equal. The results were 
achieved by the use of the structure of feasible 
replacement time sets and appropriate dynamic 
programming recursions. Ukwu [14] set out to 
remedy the situation in Ukwu [10,11] for nonzero 
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starting ages. The major contributions of Ukwu 
[14]  are as follows: It provided alternative layout 
and solution templates to those in Ukwu [10,11], 
with full automation of all computations for 

1 1.=t  The case 1 2t ≥  required only trivial 

repositioning of the last automated state 11i t− +

, 1 1t −  places to the right,  with the cell values in-

between deleted in each of stages 

1 11 , , , 2,1+ + + Km t m t  of the process, where 

{1,2, , }∈ Li n  is the decision year, m  is the 

mandatory equipment replacement age, n  is the 

length of the planning horizon and 1t  is the 

starting age of the equipment. The article also 
gave an exposition on the solution template 
incorporating the outputs for given problem 
instances, as reflected in Tables 1, 2, 3, 4 and 5. 
The outputs were shown to be consistent with 
the general exposition. Ukwu [15] remedied the 

remaining drawback in Ukwu [10,11] by providing 
alternative layout and solution templates to those 
in [10], with full automation of all computations 

for the case 1 .0=t  Ukwu [15] also gave an 

exposition on the solution template incorporating 
the outputs for the given problem and general 
problems in that class.  
 
The major contributions of this article are as 
follows: It eliminates the manual intervention in 
the repositioning of the afore-mentioned states 
and solves simultaneously, in a single action, any 
instance of the equipment replacement problem 

for the entire set { } { }1 1, 2, ,t m= L of feasible 

nonzero starting ages. These are, indeed, trail-
blazing scientific findings, with far reaching 
implications for holistic and batch optimal 
solution implementations for multiple starting age 
problems. 

 
2. MATERIALS AND METHODS 
 
In this section, the problem data, working definitions, elements of the DP model and the dynamic 
programming (DP) recursions are laid out as follows: 
 

{ }

1
Equipment Starting age =

Equipment Replacement age = 

The set of feasible equipment ages (states) in decision period (say year ), 1, 2, ,
i

t

m

S i i i n= ∈ K

 

( ) annual revenue from a year old equipment

( ) annual operating cost of a year old equipment

= −
= −

r t t

c t t
 

( ) salvage value of a year old equipment;0,1, ,

fixed cost of acquiring a new equipment in any year

= − =

=

Ks t t t m

I
 

 

The elements of the DP are the following: 
 

1. Stage ,i  represented by year { }, 1, 2, ,∈ Ki i n  

2. The alternatives at stage (year) .i  These call for keeping or replacing the equipment at the 
beginning of year i 

3. The state at stage (year) ,i  represented by the age of the equipment at the beginning of year .i  
 

Let ( )if t  be the maximum net income for years , 1, , 1,+ −Ki i n n  given that the equipment is 

t  years old at the beginning of year .i  
 

Note:  The definition of ( )i tf  starting from year i to year n  implies that backward recursion will be 

used. Forward recursion would start from year 1 to year .i  
 
The template will appropriate the following theorem formulated in [5] and exploited in [10,11], using 
backward recursive procedure. 
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2.1 Theorem 1: Dynamic Programming Recursions for O ptimal Policy and Rewards [5]  
 

( )

( ) ( )

1

1

1

( ) ( ) ( 1); IF KEEP
max

(0) ( ) (0) (1); REPLACE

, 0,1, , 1, age of machine at the start of period 1

+

+

+

− + +
=

+ − − +

= = − = +





K

i

i

i

n

r t c t f t
f t

r s t I c f

f x s x i n x n  
 
2.1.1 Proof of theorem 1 (Ukwu [10])  
 
Decision: KEEP 

net revenue (income) from a -year old machine during the decision year . ( ) ( ) =−i i t ir t c t  

Then the equipment age advances to 1t +  years and hence 1( 1)+ + =if t  maximum income for years 

1, ,+ Ki n  given that the equipment is 1t +  years old at the start of year .1+i  
 
Decision: REPLACE

      

1 year revenue  from a new equipment (age 0) during the decision year .

(0) cost of operating a new equipment for 1 year (from the start of year to the end of year )

cost of a new equipmen

(0)

=

= −

=
i

i

i

i

c i i

r

I t during the decision year .

salvage cost for a year old equipment during the decision year .( ) = −i

i

t is t

 

1

max net income fornet income for operating
the new equipment from the
beginning of year to the
end of year . The age of the

   equipment then advances to 1 year

(1)Net income (0) (0) ( ) += − + − +
14243 ii i i i

i
i

r c fs t I
{

years 1, , given
that the machine is 1-year
old at the start of year 1

+

+

Ki n

i

 

1 1 1 1( ) ( )or (.) (.)+ + + += = ⇒n n n nf x s x f s sell off the equipment at the end of the planning horizon at 

price 1(.),+ns regardless of its age, with no further income realized from the beginning of year 1n + , 

since the planning horizon length is n  years. Therefore the recursive equation is correct. This 
completes the proof. 
 

2.2 Pertinent Remarks on the DP Recursions (Ukwu [1 0]) 

 

{ } ( ) ( )
{ }

{ }
,

1 1

For   may be identified as  , where1,2, , , max ( ), ( )

and ( ) ( ) ( ) ( 1) ( ) (0) ( ) (0) (1)+ +

∈ =

= − + + = + − − +

L K R
i i i i

K R

K R
i ii ii i i i i i

i n f t f t f t f t

f t r t c t f t f t r s t I c f
 

{ }

{ },

For   may be identified as  

( ),  if Decision is KEEP
( ) argmax ( , , ); ( , , )

( ) ,  if Decision is REPLACE

1,2, , and the optimal decision ( ),where∈

= = 


∈L

K
i

i i i R
K R

i

i i

D

i D

f t
t g t K R g t K R

f t

n t S t

 
 
Define 

                       
1,   if decision is REPLACE in stage (start of decision year )

0, if decision is KEEP in stage (start of decision year )
 

= 


i

i i

i i
x  
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Then 
 

                      { }( , , ) ( ) (1 ) ( ) ( ), 1,2, ,= = − + ∈ LK R
i i i i i ig t K R f t x f t x f t i n  

 

If the revenue profile is not given, then ( )ir t  may be set identically equal to zero, in which case 

minimum cost associated with operating the equipment from the start of decision year to the 

                 end of decision year .

( )  − =i i

n

f t

 

If the variable cost profile is not given then ( )ic t  may be set identically equal to zero, in which case 

.( )  maximum net revenue (maximum profit) from the start of decision year to the end of decision year =
i

f t i n  

If the cost profile is not given then ( ) and  i it Ic  may be set identically equal to zero, in which case 

.( ) maximum accrueable revenue from the start of decision year to the end of decision year =if t i n  

 
3. RESULTS AND DISCUSSION 
 
3.1 Theorem on Analytic Determination of the Set of  Feasible Ages at Each Stage. 

Ukwu [10] 
 

{ } { }
1

1 1

Let  denote the set of feasible equipment ages at the start of the decision year . Let  denote the 

age of the machine at the start of the decision year ,  that is, . Then for 1, 2, , ,= ∈ K

iS i t

i S t i n  
 

{ }{ } ( ) { }( ){ }

{ }{ }

1 1 12

12

 

min 1, 1 2 sgn max 2 ,0 ,if

   

min 1, ,  if

≤ ≤

≤ ≤

 − ∪ + − + + − − <

= 


− ≥


j i

i

j i

j m i t m t i t m

S

j m t m
 

 

1The following results are immediate consequences of theorem 3.1 for  1 and unspecifiedt m=
 
3.1.1 Corollary on analytic determination of the se t of feasible ages at each stage with starting 

age 1 
 

 
 
 

               

{ }{ } ( ){ }12
If the replacement age  is unspecified, set . Then min 1, 1 2

≤ ≤
= ∞ = − ∪ + − +i j i

m m S j m i t

           If  the replacement age m

 

is not specified, set ,= ∞m in which case

                                 

{ } { }1If 1,  then 1, , , for  1, ,= = ∈L Ljt S j j n
 

 
An algorithm and solution template will now be designed, based on the author’s theorem as 
formulated and proved below. 
 

{ } { }
{ } { }1

1,2, , , for  2,3, ,
If 1,  then 

1,2, , , for  , ,
j

j j m
t S

m j m n

 ∈= = 
∈

L L

L L
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3.2 Theorem on Optimal Policy Prescriptions Returns  based on Multiple Starting Ages 
 

2

Let the given  problem be of  horizon length ,  with an arbitrary feasible nonzero starting age. 

Suppose that is another horizon length for the same problem such that the following 

conditions hold:

(i)

n

n

2

2

2

 >  

(ii) 1 , where is the equipment replacement age 

(iii) The - stage problem has the starting age 1, in stage 1 of the decision process.

+ − ≥

n n

n n m m

n

Then * ( ), ( )j j j jD s f s are stage j  optimal decisions and reward from the template with horizon   

length { }2 2 2, for { 1 , , },with the set of starting ages 1,2, ,∈ + − L Ln j n n n m
 
if and only 

if  
2 2

* ( )+ − + −j n n j n nD s
2 2

and  ( )+ − + −j n n j n nf s  are the corresponding optimal decisions and reward in 

stage 2j n n+ −  for the template with the horizon length n , with the same set of starting ages

{ }1,2, ,L m . 

 
Proof 
 
Stage numbers do not feature explicitly in the solution; they feature implicitly from the fact that the 
feasible age states are functions of the stage number. To obtain the optimal strategies for an 

-horizon n problem from the corresponding 2 2-horizon problem, ,n n n> for multiple starting ages, 

simple solve the problem top down (backward dynamic programming approach) for n stages. 
Therefore the problem must be solved for stages 

2 2 2 2, 1, ,  such that 1 , 1 . Let − + − = ⇒ = + −L in n x n x n x n n S
 
denote the set of feasible 

starting ages for the -horizon n problem, {1,2, , }i n∈ L . Then by defining 

{ }
2 2 22 2 2 1 1

ˆ ˆ ˆ, for 1 ,2 , , ,  it is clear that ;j j n n n n n nS S j n n n n n S S S S+ − + −= ∈ + − + − = =L . Hence 

21 1
ˆ n nS S+ − =  constitutes the set of feasible initial starting ages for the revised stage 1 of the 

-horizon n problem for the given 
22

ˆ-horizon length, while =n nn S S  constitutes the set of feasible 

starting ages in stage n of the -horizon n problem for the given 2 2-horizon length, .n n n>   The 

implication of these facts/revelations is that the optimal policy prescriptions and the corresponding 
returns for the  -horizon n problem for all feasible nonzero starting ages {1,2, , }mL can be secured 

in one fell swoop, by choosing 2n  such that 21 ,n n m+ − ≥  and storing the value 1 for the single 

starting age 1t  of the 2n -stage problem, in cell $G$2 of the Excel template (by an appeal to corollary 

3.1.1 and Ukwu [10]). Then, by restricting the set { }2 2 2 to  1 ,2 , , ,jS j n n n n n∈ + − + − L the 

optimal rewards for the -stagen problem from stage to i n  are read off in stage 2i n n+ −  of the 

2-stagen problem, while the optimal strategies can be secured from stages 2i n n+ −  to 2n .  Hence     
*

2are stage optimal decisions and reward from the template with horizon length( ), (    ) ,j j j jf js nD s
 

{ }2 2 with the set of starting agesfor  { 1 , , },  1,2, ,∈ + − L Lj n n n m
 
if and only if 

2 2

* ( )+ − + −j n n j n nD s

2 2
and  ( )+ − + −j n n j n nf s  are the corresponding optimal decisions and reward in stage 2j n n+ −  for the 

template with the horizon length n , with the same set of starting ages{ }1,2, ,L m . 
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For simplicity, take 2 1= + −n m n . This is the minimum horizon length for the 2-stagen problem for 

the realization of the full set of feasible nonzero starting ages {1,2, , }mL , with respect to the 

-stagen problem. Then 21 n n m+ − =  and stages 2, 1, ,m m n+ L are the corresponding stages for 

the -stagen problem. 
 
3.3 An Algorithm for the Implementation of Theorem 3.2 
 
Step 1: Design of Excel Template 

 
Table 1. Excel spreadsheet layout, documentation, d ata and fixed value storage, stage 

numbering, policy prescriptions and reward automati on 
 

 
 

A B C D E F G … … … N 

1 ERP sol ution 
template  

    n Starting  
age 

 
 

   

2 Replacement 
age  m ====   

  m_val yrs.  n_val 
1t      

3  Given 
data  

  Stage  [=1 ]      

4  I  = I_val V(0) =    
[= 2 ] 

     

5 Age  t (yrs.)            
6 Revenue: r(t) 

($) 
r(0) r(1) r(2) …    

 
   

7 Mnt. cost, c(t) 
($) 

c(0) c(1) c(2) …       

8 Salvage value, 
s(t)  

 s(1) s(2) s(3) …      

9 K           
10 R           
11 Opt. value: f(t)           
12 Opt. decision            
13 State            
14            
15     Stage  [=3 ]      
16            
17            
18            
19            
20            

MMMM             

            
 
Use Excel column A and other indicated cell 
reference for identifiers and documentation, as 
shown above, in bold type font. Save the 
revenue data in Excel row 6, in contiguous cell 
locations, beginning from column B; save the 
maintenance cost data in Excel row 7, in 
contiguous cell locations, beginning from column 
B; save the salvage data in Excel row 8, in 

contiguous cell locations, beginning from column 
C; save the identifiers in remaining stages 

1 to 1n −  in the above table, using the Copy and 
Paste functionality. Consecutive stages should 
be separated by a blank row.  
 

[=2] Under the decision R, save the fixed value 
(0) (0) (0)V r c I= − −  under the fixed cell 
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reference $F$4, using the code:  = $B$6-$B$7-
$C$4, <ENTER>. 
 
Store 1,  and ,1m n t = in the fixed (absolute) cell 

references $D$2, $F$2, and $G$2 respectively. 
 
To automate the stage numbering, perform the 
following actions: 
 

[=1]: Store last stage number n  under the 
relative cell reference $F3, by typing:  =$F$2 
there, followed by <Enter>. 
 
[=3]: Secure the stage number 1n −  under 
the relative cell reference $F15, by typing:  
=$F$2 - 1 there, followed by <Enter>. 
 

Secure the stage number 2n −  under the 
relative cell reference $F22, by typing:  
=$F15 - 1 there, followed by <Enter>. 

 
Step 2: Automation of the states in all n  
stages 
 
Blank out column B, beginning from row 8. 
 
Type the following code in C13: 
 

= IF ( B13 >= $D$2,"", IF (AND ($F3-1+$G$2 
> $D$2, B13 < $F3-1),1+B13,  
 

IF (AND ($F3-1+$G$2   > $D$2, B13 >= 
$F3-1),"", IF (AND ($F3-1+$G$2 <= $D$2, 
B13 < $F3-1), 1+B13, 
 
IF (AND ($F3-1+$G$2 <= $D$2, B13 = $F3-
1), $F3-1+$G$2,""))))) <Enter>. 

 
Click back on cell C13 and position the cursor at 
the right edge of the cell until a crosshair 
appears. Then drag the crosshair across to the 
last the cell N13 to secure the stage n states 
with trailing blank spaces. 
 
Henceforth, the act of clicking back on a 
specified cell, positioning the cursor at the right 
edge of the cell until a crosshair appears and the 
crosshair-dragging routine will be referred to as 
clerical routine/duty.   
 
Now copy C13:N13 and paste it           
successively onto the cell references 

( )[ ] ( )[ ] { }C 13 7 : N 13 7 ,  for 1, 2, , 2,1 ,n i n i i n n+ − + − ∈ − − L

to secure the states in the remaining 1n −  
stages. 
 

Step 3: Stage n Computations  
 

For 1t = , under REPLACE, type the following 
code in the cell reference C10: 
 

=If (C13 = “”,””, $F$4+ $C$8+C$8) <ENTER> 

to secure (1).R
nf  

 

Perform the horizontal clerical duty across to the 
last cell location N10, to secure 

and trailing blank spaces, for each ( ),  , 2R

n n n n nsf s S s∈ ≥
 

For 1t = , under KEEP, type the following code 
in the cell reference C9: 
 

=If ($C13 =$D$2,”Must Replace”, if (C13= 
“”,””, C$6-C$7+D$8)) <ENTER> to secure 

(1).K
nf  

 

Perform the clerical duty to secure 
and trailing blank spaces, for each ( ),  , 2K

n n n n nsf s S s∈ ≥ . 

To secure ( ), for ,
n n n nf s Ss ∈  type the following 

code in the cell reference C11: 
 

=If (C13 = “ ”,” ”,if (C9 = “Must Replace”, 
C10, max(C9,C10)))  <ENTER> to secure 

(1).nf  
 

Then perform the clerical routine across to N13

to secure  ( ), : 2n n n n nf s s S s∈ ≥ and blank 

spaces. 
 
3.3.1 Remarks on segment code redundancy  
 
In Excel, the max and min functions return values 
for only numeric expressions, ignoring string 
constants; for example if the number 6 is saved 
in B2 and the string constant  “Must ”  is saved in 
C2, Then in D2, the code: = max(B2, C2) 
<Enter> returns 6. In E2, the code:  = max (B2, 
C2) <Enter> also returns 6. Therefore the code 
segment involving “if (C9 = “Must Replace”, C10” 
may be dispensed with throughout the template. 
 

To obtain the optimal decision for each of the 

stage n  states ,nns S∈  type the following code 

in the cell reference C12: 
 

=If (C13 = “ ”,” ”,if(C13 = $D$2, “R”, if(C9 = 
C10, “K/R”, if(C9 > C10, “K”, “R”)))) 

<ENTER> to secure (1).nD  
 

Then perform the clerical routine 
to secure  ( ), for : 2n n n n nD s s S s∈ ≥

 
and blank 

spaces in sequence. 
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Step 4: Stage ( n - 1) Computations: 
 
For 1t = , under REPLACE, type the following 
code in the cell reference C17: 
 

=If (C20 = “”,””, $F$4+ C$8+$C11) <ENTER> 

to secure 1 .(1)R
nf −  

 

Perform the clerical duty to secure 

1 1 1 1 1and trailing blank spaces, for each ( ),  , 2R

n n n n nsf s S s− − − − −∈ ≥
and succeeding blank spaces 
 

For 1t = , under KEEP, type the following code 
in the cell reference C16: 
 

=If (C20 =$D$2,”Must Replace”, if (C20 = “”,””, 

C$6-C$7+D11)) <ENTER> to secure 7 (1).Kf  

Perform the clerical duty to secure 

1 1 1 1 1 ( ),  and trailing blank spaces, for each , 2− − − − −∈ ≥K

n n n n nsf s S s   
 

To secure 
1 1 1 1( ), for 

n n n nf s Ss− − − −∈  type the 

following code in the cell reference C18: 
 

=If (C20 = “ ”,” ”, if (C16 = “Must Replace”, 
C17, max(C16,C17)))<ENTER> to secure 

1(1).nf −  Then perform the clerical routine  

1 1 1 1 1to secure  ( ), for , 2n n n n nf s Ss s− − − − −∈ ≥
 and succeeding blank spaces. 

 

To obtain the optimal decision for each of the 
stage 1n −  states, type the following code in the 
cell reference C19: 
 

=If (C20 = “ ”,” ”,if(C20 =$D$2, “R”, if(C16 = 
C17, “K/R”, if (C16 > C17, “K”, 

“R”))))<ENTER> to secure 1(1).nD −  
 

Then perform the clerical routine 

to secure  ( ), for : 2n n n n nD s s S s∈ ≥  and trailing 

blanks. 
 

Step 5: Stage ( n - 2) Computations  
 

Copy the contiguous region $A15:N20 of stage 
n-1 into the contiguous region $A22:N27 of stage 
n– 2 to secure stage (n - 2) computational 
values. 
 

∈ −

Step 6:  Stage  Implementations, 

{ 3, , 2,1},  in One Fell SwoopL

i

i n  

 
This is a crucial step involving a single Copy and 
( 3)n − Paste Operations, using the contiguous 

region: $A22:N27 of stage ( 2)n − . 

Simply use the Copy and Paste functionality to 
copy and paste the contiguous region $A22:N27 

successively onto stages ( 3) to 1n− regions.  

 
Note:  Consecutive stages should be separated 
by a blank row.  In other words, for 

{ 3, 4, ,1}i n n∈ − − L use the Copy and Paste 
functionality to copy and paste the contiguous 
region $A22:N27 successively into stages 
( 3) to 1n− regions: 

 

( )[ ] ( )[ ]A$ 8 7 : A$ 13 7n i n i+ − + − . 

 
Note that the stage numbering is automatically 
implemented, computations in all stages are 
automatically executed and the problem with the 
starting age 1 is correctly solved right-off-the-bat.  
 
Step 7:  Batch Solution Implementations 

for feasible Starting Ages {1, 2, , },

in One Fell Swoop, for an -Stage Problem

L m

n

 

 

Choose 2 2:1 .n n n m+ − ≥ Indeed, without any 

loss of generality choose 2 1n m n= + − . Store 

the above value of 2n  in the fixed cell reference 

$F$2. 
 
Use the template to implement the optimal 
solutions and the corresponding rewards for the 

2-stagen  Problem. 

 

Go to stage 21 n n+ −  of the template for the 2n  

horizon problem. Clearly { }
21 1, 2, , ,+ − = Ln n mS  

by an appeal to corollary 3.1.1. 
 
The optimal policy prescriptions and 
corresponding rewards for the n - horizon 
problem for  the entire set of feasible nonzero 

starting ages { }1,2, ,mL from stage 1 to n  are 

exactly the same as those of the 2n  horizon 

problem from stage 2 21  to .n n n+ −  

Tremendous huh! 
 
So, simply pick up the optimal policy 
prescriptions and corresponding rewards from 
there. 
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3.3.2 Remarks on the use of the templates for 
large problem sizes  

 
It is clear that the crosshair horizontal-dragging 
routine must be extended beyond column N, as 
appropriate, if 13.m ≥  This can be optimally 
done before the Copy and Paste operations from 
stage 1.−n Hence the template can be 
adequately appropriated for sensitivity analyses 
on this class of Equipment Replacement 
problems in just a matter of minutes, as 
contrasted with manual investigations that would 
at best consume hours or days with increasing 
values of  and/or m n  and the number of 
investigations, not to talk of the dire 
consequences of committing just one error in any 
stage computations. 
 
3.3.3 Implication of the algorithm  
 
The implication of theorem 3.2 is that, for any 
problem instance with a given planning      
horizon length, n  the optimal strategies and 

rewards for all corresponding problems of  
2 horizon length≤ < n  are automatically 

generated from the  -horizonn  solution template 
simultaneously for the set of feasible nonzero 
starting ages.  
 
In the sequel an application problem is given 
below to illustrate the solution template 
implementations. 
 
3.4 Application Problems on Theorem 3.1 

and the Implementation of the 
Solution Templates 

 
A company needs to determine the optimal 

replacement policy for a current 1
- year oldt

equipment over the next n  years. The following 

table gives the data of the problem. The 
company requires that a 6 – year old equipment 
be replaced. The cost of a new machine is 
$100,000. 

 
Table 2. Pertinent data for optimal policy and rewa rd determination 

 
Age: t  yrs. Revenue: r(t) ($) Operating cost: c(t) ($) Salvage value: s(t) ($) 
0 20,000 200 - 
1 19,000 600 80,000 
2 18,500 1,200 60,000 
3 17,200 1,500 50,000 
4 15,500 1,700 30,000 
5 14,00 1,800 10,000 
6 12,200 2,200 5,000 

 
(a) Obtain the optimal policy prescriptions and the corresponding rewards in one fell swoop for 

{ }2,3, ,7∈ Ln  and the set of starting ages {1, 2,3, 4,5, 6}, using dynamic programming 

recursions. 
(b) What minimum horizon length template is required to obtain the optimal policy                

prescriptions and the corresponding rewards in one fell swoop for the 
{ }- horizon problems, 8,9, 12∈ Ln n

 
with the set of starting ages {1, 2,3, 4, 5, 6},using dynamic 

programming recursions? Using this horizon length, obtain the optimal returns for problem (b) 
with respect to the set of starting age {1, 2,3, 4, 5, 6}. 

 
Solution 
 

(a) In the given problem 6.=m  The maximum horizon length is 7. Therefore the minimum 

horizon length required for the solution template is 2 2 max 2 max:1 1+ − = ⇒ = + −n n n m n m n

2 6 7 1 12⇒ = + − =n . 
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Fig. 1. Template solutions of the equipment replace ment problem for the j - year horizon      

problem, {{{{ }}}}, , ,j ∈∈∈∈ 2 3 4  with respect to the set of starting ages  {{{{ }}}}, , ,L1 2 6  

 
3.4.1 Equipment age transition diagrams for the opt imal policy prescriptions corresponding to 

various starting ages for the 2-year horizon problem  using the decision and salvage 
symbols K, R, S 

 
These can be promptly obtained from stages 11 and 12 of the 12-stage problem. Simply use the 
stages 11 and 12, with the starting ages in stage 11, translating to the following equipment age 
transition diagrams and optimal values: 
 

Age 1: Unique optimum

           Optimal value (Maximum Net Income for years 1 and 2) $ , .

⇒⇒⇒⇒

= == == == =
K K S1 2 3

85 700 00
 

Age 2: 2 Unique optimum

           Optimal value (Maximum Net Income for years 1 and 2) $ , .

⇒⇒⇒⇒

= == == == =
K R S3 1

67 100 00
 

Equipment Replacement Problem Solution Template n Starting Age
Replacement Age = 6 yrs 12 1

Given Data Stage 12
I     = 100000 V(0) = r(0)-c(0) - I  = -80200

Age  t  (yrs.) 0 1 2 3 4 5 6
Revenue: r(t) ($) 20000 19000 18500 17200 15500 14000 12200
Mnt. cost, c(t) ($) 200 600 1200 1500 1700 1800 2200
Salvage value, s(t) 80000 60000 50000 30000 10000 5000

K 78400 67300 45700 23800 17200 Must Replace
R 79800 59800 49800 29800 9800 4800

Opt. value: f(t) 79800 67300 49800 29800 17200 4800
Opt. Decision R K R R K R

State 1 2 3 4 5 6

Stage 11
K 85700 67100 45500 31000 17000 Must Replace
R 79600 59600 49600 29600 9600 4600

Opt. value: f(t) 85700 67100 49600 31000 17000 4600
Opt. Decision K K R K K R

State 1 2 3 4 5 6

Stage 10
K 85500 66900 46700 30800 16800 Must Replace
R 85500 65500 55500 35500 15500 10500

Opt. value: f(t) 85500 66900 55500 35500 16800 10500
Opt. Decision K/R K R R K R

State 1 2 3 4 5 6

Stage 9
K 85300 72800 51200 30600 22700 Must Replace
R 85300 65300 55300 35300 15300 10300

Opt. value: f(t) 85300 72800 55300 35300 22700 10300
Opt. Decision K/R K R R K R

State 1 2 3 4 5 6



 
 
 
 

Chukwunenye; AIR, 7(4): 1-20, 2016; Article no.AIR.26667 
 
 

 
13 

 

Age 3: Unique Optimum

           Optimal value (Maximum Net Income for years 1 and 2) $ , .

⇒⇒⇒⇒

= == == == =
R R S3 1 1

49 600 00
 

Age 4: 4 5 6 Unique Optimum

           Optimal value (Maximum Net Income for years 1 and 2) $31,000.00

⇒⇒⇒⇒

= == == == =
K K S

 

Age 5: 5 6 1 Unique Optimum

           Optimal value (Maximum Net Income for years 1 and 2) $17,000.00

⇒⇒⇒⇒

= == == == =
K R S

 

Age 6: 6 1 1 Unique Optimum

           Optimal value (Maximum Net Income for years 1 and 2) $ , .

⇒⇒⇒⇒

= == == == =
R R S

4 600 00  
 
3.4.2 Optimal policy prescription corresponding to 1 2 3K K S : 
 
Start with a one-year machine at the beginning of decision year 1; keep (deploy) the machine for the 
next two years until the end of the decision year 2 when it is mandatorily salvaged. The net profit 
generated would be $85,700.00. 
 
3.4.3 Age transition diagrams for the optimal polic y prescriptions corresponding to various  

starting ages for the 3-year horizon problem using t he decision and salvage symbols K, 
R, S 

 
These can be promptly obtained from stages 10 to 12 of the 12-stage problem. Simply use the stages 
10 to 12, with the starting ages in stage 10, translating to the following equipment age transition 
diagrams and optimal values: 
 

Age 1: ;  Alternate optima

           Optimal value (Maximum Net Income for years 1 to 3) $ , .

⇒⇒⇒⇒

= == == == =
K K R S R K K S1 2 3 1 1 1 2 3

85 500 00
 

Age 2: 2 Unique optimum

           Optimal value (Maximum Net Income for years 1 to 3) $ , .

⇒⇒⇒⇒

= == == == =
K R R S3 1 1

66 900 00
 

Age 3: Unique Optimum

           Optimal value (Maximum Net Income for years 1 to 3) $ , .

⇒⇒⇒⇒

= == == == =
R K K S3 1 2 3

55 500 00
 

Age 4: 4 1 2 3 Unique Optimum

           Optimal value (Maximum Net Income for years 1 to 3) $ , .

⇒⇒⇒⇒

= == == == =
R K K S

35 500 00
 

Age 5: 5 Unique Optimum

           Optimal value (Maximum Net Income for years 1 to 3) $ , .

⇒⇒⇒⇒

= == == == =
K R R S6 1 1

16 800 00
 

Age 6: 6 1 2 3 Unique Optimum

           Optimal value (Maximum Net Income for years 1 to 3) $ , .

⇒⇒⇒⇒

= == == == =
R K K S

10 500 00
 

 
3.4.4 Interpretation of a selected transition diagr am  
 
1 2 3 1 :K K R S Machine Age 1 transits to 2 and 3 after the machine has been deployed for 1 and 2 
years respectively. Then the three year-old machine is replaced and deployed for one year, 
whereupon the age of the machine becomes 1 at the end of year 3, noting that the age of the 
replacement machine at the beginning of year 3 is 0. 
 
3.4.5 Optimal policy prescription corresponding to 1 2 3 1K K R S : 
 
Start with a one-year machine at the beginning of decision year 1; keep (deploy) the machine for the 
next two years and then replace it at the beginning of the decision year 3 until the end of the decision 
year 3 when it is mandatorily salvaged. 
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3.4.6 Age transition diagrams for the optimal polic y prescriptions corresponding to various 
starting ages for the 4-year horizon problem using t he decision and salvage symbols K, 
R, S 

 
Age 1: ;  ;  Alternate optima

           Optimal value (Maximum Net Income for years 1 to 4) $ , .

1 2 3 1 1 1 1 2 3 1 1 1 1 2 3

85 300 00

K K R R S R K K R S R R K K S ⇒⇒⇒⇒

= == == == =
 

Age 2: 2 Unique optimum

           Optimal value (Maximum Net Income for years 1 to 4) $ , .

3 1 2 3

72 800 00

K R K K S ⇒⇒⇒⇒

= == == == =
 

Age 3: 3R1K2K3R1S;3R1R1K2K3S Alternate Optima

           Optimal value (Maximum Net Income for years 1 to 4) $ , .55 300 00

⇒⇒⇒⇒

= == == == =
 

Age 4: 4 1 2 3 1 ;4 1 1 2 3 Alternate Optima

           Optimal value (Maximum Net Income for years 1 to 4) $ , .35 300 00

R K K R S R R K K S ⇒⇒⇒⇒

= == == == =
 

Age 5: 5K6R1K2K3S Unique Optimum

           Optimal value (Maximum Net Income for years 1 to 4) $ , .22 700 00

⇒⇒⇒⇒

= == == == =
 

Age 6: 6 1 2 3 1 ;6 1 1 2 3 Alternate Optima

           Optimal value (Maximum Net Income for years 1 to 4) $ , .10 300 00

R K K R S R R K K S ⇒⇒⇒⇒

= == == == =
 

 
3.4.7 Age transition diagrams for the optimal polic y prescriptions corresponding to various 

starting ages for the 5-year horizon problem using t he decision and salvage symbols K, 
R, S 

 
Start from stage 8, secure the three concatenated objects for each starting age and proceed to the 
relevant starting age in stage 9, to complete the transition diagrams: 
 

1 2→K  Concatenate 1K with starting age 2 transition diagrams starting from stage 9 up 

2 3→K  Concatenate 2K with starting age 3 transition diagrams starting from stage 9 up 

3 1→R   Concatenate 3R with starting age 1 transition diagram starting from stage 9 up 

4 5→K  Concatenate 4K with starting age 5 transition diagrams starting from stage 9 up 

5 6→K  Concatenate 5K with starting age 6 transition diagrams starting from stage 9 up 

6 1→R  Concatenate 6R with starting age 1 transition diagrams starting from stage 9 up 
 
Hence 
 

Age 1: 1 2 Unique optimum

           Optimal value (Maximum Net Income for years 1 to 5) $ , .

3 1 2 3

91 200 00

K K R K K S ⇒⇒⇒⇒

= == == == =
 

Age 2:2 3R1K2K3R1S;2 3R1R1K2K3S Alternate Optima

           Optimal value (Maximum Net Income for years 1 to 5) $ , .72 600 00

K K ⇒⇒⇒⇒

= == == == =
 

Age 3: 3 ;  3 ;  3 Alternate optima

Optimal value (Maximum Net Income for years 1 to 5) $ , .

1 2 3 1 1 1 1 2 3 1 1 1 1 2 3

55 100 00

R K K R R S R R K K R S R R R K K S ⇒⇒⇒⇒

= == == == =
 

Age 4: 4 5K6R1K2K3S Unique Optimum

           Optimal value (Maximum Net Income for years 1 to 5) $ , .36 500 00

K ⇒⇒⇒⇒

= == == == =
 

Age 5: 5 6 1 2 3 1 ;5 6 1 1 2 3 Alternate Optima

           Optimal value (Maximum Net Income for years 1 to 5) $ , .22 500 00

K R K K R S K R R K K S ⇒⇒⇒⇒

= == == == =
 

Age 6: 6 ;  6 ;  6 Alternate optima

           Optimal value (Maximum Net Income for years 1 to 5) $ , .

1 2 3 1 1 1 1 2 3 1 1 1 1 2 3

10 100 00

R K K R R S R R K K R S R R R K K S ⇒⇒⇒⇒

= == == == =
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Fig. 2. Template solutions of the equipment replace ment problem for the j - year horizon      

problem, {{{{ }}}}, , ,j ∈∈∈∈ 5 6 7  with respect to the set of starting ages {{{{ }}}}, , ,L1 2 6 , to be used in  

combination with Fig.  1 

Stage 8

K 91200 72600 51000 36500 22500 Must Replace

R 85100 65100 55100 35100 15100 10100

Opt. value: f(t) 91200 72600 55100 36500 22500 10100

Opt. Decision K K R K K R

State 1 2 3 4 5 6

Stage 7

K 91000 72400 52200 36300 22300 Must Replace

R 91000 71000 61000 41000 21000 16000

Opt. value: f(t) 91000 72400 61000 41000 22300 16000

Opt. Decision K/R K R R K R

State 1 2 3 4 5 6

Stage 6

K 90800 78300 56700 36100 28200 Must Replace

R 90800 70800 60800 40800 20800 15800

Opt. value: f(t) 90800 78300 60800 40800 28200 15800

Opt. Decision K/R K R R K R

State 1 2 3 4 5 6

Stage 5

K 96700 78100 56500 42000 28000

R 90600 70600 60600 40600 20600

Opt. value: f(t) 96700 78100 60600 42000 28000

Opt. Decision K K R K K

State 1 2 3 4 5

Stage 4

K 96500 77900 57700 41800

R 96500 76500 66500 46500

Opt. value: f(t) 96500 77900 66500 46500

Opt. Decision K/R K R R

State 1 2 3 4

Stage 3

K 96300 83800 62200

R 96300 76300 66300

Opt. value: f(t) 96300 83800 66300

Opt. Decision K/R K R

State 1 2 3

Stage 2

K 102200 83600

R 96100 76100

Opt. value: f(t) 102200 83600

Opt. Decision K K

State 1 2

Stage 1

K 102000

R 102000

Opt. value: f(t) 102000

Opt. Decision K/R

State 1
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3.4.8 Age transition diagrams for the optimal polic y prescriptions corresponding to various   
starting ages for the 6-year horizon problem using t he decision and salvage symbols K, 
R, S 

 
Start from stage 7, secure the three concatenated objects for each starting age and proceed to the 
relevant starting age in stage 8, to complete the equipment age transition diagrams: 
 

1 2;1 1→K R  Concatenate 1  and 1K R with starting ages 2 and 1 transition diagrams 

respectively from stage 8 up 
 2 3→K  Concatenate 2K with starting age 3 transition diagrams from stage 8 up 

 3 1→R   Concatenate 3R with starting age 1 transition diagram from stage 8 up 

4 1→R  Concatenate 4R with starting age 1 transition diagrams from stage 8 up 

5 6→K  Concatenate 5K with starting age 6 transition diagrams from stage 8 up 

6 1→R  Concatenate 6R with starting age 1 transition diagrams from stage 8 up 

 

Age 1:1 ; ;  1 1 2

Optimal value (Maximum Net Income for years 1 to 6) $ , .

Alternate Optima

           

2 3 1 2 3 1 1 2 3 1 1 2 3 3 1 2 3

91 000 00

K K R K K R S K K R R K K S R K K R K K S ⇒⇒⇒⇒

= == == == =
Age 2: 2 3 ;  2 3 ;  2 3 Alternate optima

           Optimal value (Maximum Net Income for years 1 to 6) $ , .

1 2 3 1 1 1 1 2 3 1 1 1 1 2 3

72 400 00

K R K K R R S K R R K K R S K R R R K K S ⇒⇒⇒⇒

= == == == =
Age 3: 3 1 2 Unique optimum

           Optimal value (Maximum Net Income for years 1 to 6) $ , .

⇒⇒⇒⇒

= == == == =
R K K R K K S3 1 2 3

61 000 00
 

Age 4: 4 1 2 Unique optimum

           Optimal value (Maximum Net Income for years 1 to 6) $ , .

⇒⇒⇒⇒

= == == == =
R K K R K K S3 1 2 3

41 000 00
 

Age 5: 5 6 ;  5 6 ;  5 6

 Optimal value (Maximum Net Income for years 1 to 6) $ , .

Alternate optima

          

1 2 3 1 1 1 1 2 3 1 1 1 1 2 3

22 300 00

K R K K R R S K R R K K R S K R R R K K S

= == == == =

⇒⇒⇒⇒

Age 6: 6 1 2 Unique optimum

           Optimal value (Maximum Net Income for years 1 to 6) $ , .

⇒⇒⇒⇒

= == == == =
R K K R K K S3 1 2 3

16 000 00
 

 
3.4.9 Age transition diagrams for the optimal polic y prescriptions corresponding to various 

starting ages for the 7-year horizon problem using t he decision and salvage symbols K, 
R, S 

 
Start from stage 6, secure the three concatenated objects for each starting age and proceed to the 
relevant starting age in stage 8, to complete the transition diagrams: 
 

1 2;1 1→K R  Concatenate 1  and 1K R with starting ages 2 and 1 transition diagrams respectively 
from stage 7 up 

 

2 3→K  Concatenate 2K with starting age 3 transition diagrams from stage 7 up 
 

3 1→R   Concatenate 3R with starting age 1 transition diagram from stage 7 up 
 

4 1→R  Concatenate 4R with starting age 1 transition diagrams from stage 7 up 
 

5 6→K  Concatenate 5K with starting age 6 transition diagrams from stage 7 up 
 

6 1→R  Concatenate 6R with starting age 1 transition diagrams from stage 7 up 
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Age 1: 1 2 3 ;  1 2 3 ;  1 2 3 ;

           1 1 ; ;  1 1 1 2

Alternate Optima

           Optimal value (Maximum Net Income for years 1 to 7

⇒⇒⇒⇒

====

K K R K K R R S K K R R K K R S K K R R R K K S

R K K R K K R S R K K R R K K S R R K K R K K S

1 2 3 1 1 1 1 2 3 1 1 1 1 2 3

2 3 1 2 3 1 1 1 2 3 1 1 2 3 3 1 2 3

) $ , .==== 90 800 00

 

Age 2: 2 3 1 2 Unique optimum

           Optimal value (Maximum Net Income for years 1 to 7) $ , .

⇒⇒⇒⇒

= == == == =
K R K K R K K S3 1 2 3

78 300 00
 

Age 3:3 1 ; ;  3 1 1 2

Alternate Optima

           Optimal value (Maximum Net Income for years 1 to 7) $ , .

⇒⇒⇒⇒

= == == == =

R K K R K K R S R K K R R K K S R R K K R K K S2 3 1 2 3 1 3 1 2 3 1 1 2 3 3 1 2 3

60 800 00

 

Age 4:4 1 ; ;  4 1 1 2

Alternate Optima

           Optimal value (Maximum Net Income for years 1 to 7) $ , .

⇒⇒⇒⇒

= == == == =

R K K R K K R S R K K R R K K S R R K K R K K S2 3 1 2 3 1 4 1 2 3 1 1 2 3 3 1 2 3

40 800 00

 

Age 5: 5 6 1 2 Unique optimum

           Optimal value (Maximum Net Income for years 1 to 7) $ , .

⇒⇒⇒⇒

= == == == =
K R K K R K K S3 1 2 3

28 200 00
 

Age 6:6 1 ; ;  6 1 1 2

Alternate Optima

           Optimal value (Maximum Net Income for years 1 to 7) $ , .

⇒⇒⇒⇒

= == == == =

R K K R K K R S R K K R R K K S R R K K R K K S2 3 1 2 3 1 6 1 2 3 1 1 2 3 3 1 2 3

15 800 00

 

 

3.5 Optimal Values for Problems with Horizon Length s {{{{ }}}}, , ,L6 7 12  
 

Table 3. Optimal returns for horizon length 6 proble m (Start from stage 7 and move up) 
 
Starting  
age 

1 2 3 4 5 6 

Optimal 
value ($) 

91,000.00 72,400.00 61,000.00 41,000.00 22,300.00 16,000.00 

 
Table 4. Optimal returns for horizon length 7 Proble m (Start from stage 6 and move up) 

 
Starting  
age 

1 2 3 4 5 6 

Optimal 
value ($) 

90,800.00 78,300.00 60,800.00 40,800.00 28,200.00 15,800.00 

 

For the problems of horizon length { }8,9, ,12 ,∈ Ln by invoking corollary 3.1.1 and theorem 3.2, the 

starting set of ages is{ } { } { }1, ,13 1, ,5 1, ,6− ⊆ ⊂L L Ln . To get the full set of nonzero starting 

ages choose a horizon length 3 312 :1 12 6. > + − ≥n n Without any loss of generality take  

3 17.=n  So the template for the n - stage problem starts from stage 31 18+ − = −n n n  of the 17-

stage problem. The results are as follows: 
 

Table 5. Optimal returns for horizon length 8 probl em 
 
Starting  
age 

1 2 3 4 5 6 

Optimal 
value 

96,700.00 78,100.00 60,600.00 42,000.00 28,000.00 15,600.00 
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Table 6. Optimal returns for horizon length 9 probl em 
 
Starting 
age 

1 2 3 4 5 6 

Optimal 
value 

96,500.00 77,900.00 66,500.00 46,500.00 27,800.00 21,500.00 

 
Table 7. Optimal returns for horizon length 10 probl em 

 
Starting 
age 

1 2 3 4 5 6 

Optimal 
value 

96,300.00 83,800.00 66,300.00 46,300.00 33,700.00 21,300.00 

 
Table 8. Optimal returns for horizon length 11 probl em 

 
Starting 
age 

1 2 3 4 5 6 

Optimal 
value 

102,200.00 83,600.00 66,100.00 47,500.00 33,500.00 21,100.00 

 
Table 9. Optimal returns for horizon length 12 probl em 

 
Starting 
age 

1 2 3 4 5 6 

Optimal 
value 

102,000.00 83,400.00 72,000.00 52,000.00 33,3000.00 27,000.00 

 

Table 10. Summary of the optimal values for problem s with horizon lengths {{{{ }}}}, , ,1 2 12L
 

 
Starting          
ages →  

1 2 3 4 5 6 

Horizon 

lengths ↓  

Optimal returns ($) 

1 79,800.00 67,300.00 49,800.00 29,800.00 17,200.00 4,800.00 
2 85,700.00 67,100.00 49,600.00 31,000.00 17,000.00 4,600.00 
3 85,500.00 66,900.00 55,500.00 35,500.00 16,800.00 10,500.00 
4 85,300.00 72,800.00 55,300.00 35,300.00 22,700.00 10,300.00 
5 91,200.00 72,600.00 55,100.00 36,500.00 22,500.00 10,100.00 
6 91,000.00 72,400.00 61,000.00 41,000.00 22,300.00 16,000.00 
7 90,800.00 78,300.00 60,800.00 40,800.00 28,200.00 15,800.00 
8 96,700.00 78,100.00 60,600.00 42,000.00 28,000.00 15,600.00 
9 96,500.00 77,900.00 66,500.00 46,500.00 27,800.00 21,500.00 
10 96,300.00 83,800.00 66,300.00 46,300.00 33,700.00 21,300.00 
11 102,200.00 83,600.00 66,100.00 47,500.00 33,500.00 21,100.00 
12 102,000.00 83,400.00 72,000.00 52,000.00 33,3000.00 27,000.00 
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4. CONCLUSION  
 
The article designed and automated prototypical 
solution templates for batch optimal policy 
prescriptions for a certain stationary class of 
equipment replacement problems, with any set 
feasible nonzero starting ages, complete with an 
algorithmic exposition on the interface and 
solution process. The optimality results were 
assured by the invocation of the structure of the 
set of feasible ages at each stage, a robust 
investigation of the solution templates in Ukwu 
[14] for the equipment starting age of 1 with 
respect to the same problem but with longer 
horizon lengths, and by deft reasoning regarding 
the non-explicit dependence of the dynamic 
programming recursions on stage numbers. 
Finally the article deployed the template to obtain 
alternate batch optimal policy prescriptions with 
respect to relevant problems, with horizon 
lengths of 2 to 12 years, and the full set of 
nonzero starting ages. These trail-blazing 
findings provide amazing refreshing simplification 
perspectives and a paradigm shift on 
simultaneous generation of optimal strategies 
and returns for the given class of equipment 
replacement problems with any desired batches 
of nonzero starting ages. Consequently, relevant 
multiple practical problems of any conceivable 
size can now be solved in just a matter of 
minutes as soon as the pertinent data have been 
organized and stored at the appropriate Excel 
cell locations, resulting in tremendous savings in 
time, cost and energy. Furthermore, any desired 
levels of sensitivity analyses can be easily 
undertaken and accomplished with great rapidity; 
needless to say that large-scale equipment 
replacement problems that hitherto could hardly 
be contemplated due to the ‘curse of 
dimensionality’ have now been reduced to  ‘a 
child’s play.’ The equipment age transition 
diagrams were leveraged on, as they provided 
veritable platforms for the interpretations of the 
optimal policy prescriptions. The efficiency, 
power and utility of the results are quite easily 
demonstrable, ‘absolutely, positively, without a 
doubt’. 
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