Direct Research Journal of Agriculture and Food Science

Vol.6 (6), pp. 128-138, June 2018 ISSN 2354-4147 DOI: https://doi.org/10.26765/DRJAFS.2018.0277 Article Number: DRJA13300277 Copyright © 2018 Author(s) retain the copyright of this article Direct Research Journal of Agriculture and Food Science http://directresearchpublisher.org/aboutjournal/drjafs

Review

Some Attempted Strategies towards the Control of Avian Coccidiosis: A Review

Kaze, Paul Davou^{1*}, Idris Lawal², Ajanusi Joseph², and Saidu Lawal^{3,}

¹Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Jos, Nigeria. ²Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria.

³Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria. Corresponding author E-mail: paulkaze@yahoo.com

Received 3 April 2018; Accepted 18 May, 2018

Avian coccidiosis is caused by intracellular protozoans parasites known as *Eimeria* species. The parasite development cause diarrhoea, morbidity and mortality, and has serious economic impact in the poultry industry worldwide. Thus, Coccidiosis remains one of the most expensive and common diseases of poultry production in spite of advances in chemotherapy, management, nutrition, and genetics. However, this paper focuses on a review concerning anticoccidial drugs and testing in birds, resistance and its origin, poultry management, alternatives for

INTRODUCTION

Anticoccidial feed additives have been used for more than 50 years to remedy or treat coccidiosis in poultry (Allen and Fetterer, 2002) and the aim of the paper was to review some attempted strategies employed towards the control of avian coccidiosis. Cooccidiosis causes annual losses of US \$ 2.4 billion to the poultry industry worldwide (Shirley et al., 2005) in both the layer and broiler industries (Chandrakesan et al., 2009). Conventional disease control strategies depend on vaccination and prophylactic use of anticoccidial drugs. However, resistance against anticoccidial compounds is widely spread and coccidiostats as feed additives was banned in Europe by the year 2012 (Regulation (EC) No 1831/2003 of the European parliament and of the council of 22 September, 2003 on additives for use in animal nutrition).

anticoccidial drugs including dietary modulation, natural additives and herbs comprising of botanicals to coccidia. The paper also viewed at the treatment programme for coccidiosis control as well as its potential implications in meat tissue to man.

Keywords: Protozoans, parasite, diarrhoea, morbidity, mortality, eimeria, poultry, anticcocidial, drugs, resistance, dietary, additives, herbs, botanicals, coccidia, treatment, coccidiosis, tissue, man.

Anticoccidial drugs

These are synthesized drugs, which include variant groups of completely different chemical classes:

1. Amprolium is good against *E. tenella* but is not very effective against *E.acervulina* and *E. maxima*.

2. Nicarbazin is a broad-spectrum anticoccidial, it is used in colder seasons or climatic areas and the drugs should not be used in birds older than 20 days because the possibility of strong growth depression. - Robendine is safe broad-spectrum anticoccidial but it must be used with caution because of its potential fast resistance build up.

3. Halofuginone and Lerbek effects on *E. tenella* are coccidiostatic activity and no coccidiocidal effect, but good for control of *E. acevurlina*.

4. Clinacox (Dicluzuril). This has a broad-spectrum activity against all *Eimeria* species. The potential of *Eimeria* species, especially *Eimeria tenella* and *Eimeria maxima* to develop resstance to the drug is low. It is also used for "clean-up" program after the use of ionophore (Leu, 1999).

Sulfonamide products

The drug exerted a major impact on the worldwide production of poultry meat (Williams, 2008). Veterinarians and Animal scientist regularly use sulfonamides for therapeutic and prophylactic. Sulfadimethoxine, and sulfaquinoxaline are mainly used for prevention or treatment of poultry coccidiosis, and are generally coadministered in feed. The treatment of hens with sulfonamides-supplemented feed may result in sulfonamides residues being present in market eggs if these drugs have been improperly administered or if the withdrawal time for the treated hens has not been observed. To assure the food safety for consumers, the European Union has set a maximum residue limit for sulfonamides in foods of animal origin such as meat, milk, and eggs (Brussels, 1991). Misuse of these veterinary drugs in laying hens is of great concerns because the drug residues are turning up in eggs, which is an indispensable food for the consumers because it is highly nutritious, cheap and readily available. A strong residue monitoring of sulfonamides in eggs is thus an important specific activity to guarantee the food safety. Removing the waste of organic solvents is also a serious problem on the world scale. From the view point of the effect of organic solvents to environments and analysts, analytical methods for the monitoring should avoid the use of organic solvents (Guo-Zhen et al., 2006; Ming-Ming et al., 2008). The feeding of 2,500 parts per million (ppm) sulfaquinoxaline causes a severe anemia in chickens with hemorrhages on the legs, breast muscle, and in abdominal organs (Khan et al., 2008). Toxicity is more likely to be observed when medication is given in the water during hot weather. Feeding 300-ppm sulfaguinoxaline to growing chickens for 8 weeks reduced the weight gain of female birds but adverse, effects were not observed when sulfaquinoxaline was administered to growing chickens at 300-ppm in various feeding schedules. Continuous feeding of 125-ppm sulfaquinoxaline was highly efficacious in preventing naturally acquired caecal and intestinal coccidiosis. The total efficacy benefits of sulfaguinoxaline in comparison with other sulfonamides were associated to the fact that it is more readily absorbed than other sulfonamides when given in the feed.

Ionophore products

lonophores are the major group of poultry feed additives

the polyether antibiotics commonly called lonophores. Six compounds have become available (Monensin, Laslocid, Salinomycin, Narasin, Maduramycin and Semduramycin), the mechanism of action of all ionophores is very similar since they mediate the transport of mono and divalent cations throw the membrane of the parasite, resulting in disturbance of its osmotic balance. lonphores can be divided into three groups according to the precise of action and chemical structure; monovalent (Monensin, Narasin and Salinomycin), monovalent glycoside (Maduramycin and Semduramycin) and divalent (Laslocid). Laslocid and Maduramycin are more effective against E. tenella than Monensin, Narasin and Salinomycin (Leu, 1999).

Polyether ionophores

They are produced by fermentation of *Streptomyces* or *Actinomadura* and they are the most widely used agents, such as salinomycin, monensin, lasalocid and narasin. They act through a general mechanism of changing ion transport and disrupting osmotic balance in the parasite.

Mode of action of anticoccidial drugs

The biochemical effect of anticoccidials is numorous, but each class of chemical compound is unique in the type of action exerted on the parasite and its development stage. Different modes of action have been observed and this can be divided into different broad categories, according to Chapman, (1997) and McDougald, (2003).

Drugs that affect cofactor synthesis

Several drugs affect biochemical pathways that are dependent upon an important cofactor. For instance, amprolium competitively inhibits the uptake of thiamine by the parasite.

Drugs that affect mitochondrial function

These drugs inhibit energy metabolism in the cytochrome system of the *Eimeria*. For instance, quinolones and clopidol inhibit electron transport in the parasite mitochondrion, but by different pathways.

Drugs that affect membrane function

lonophores in common have the ability to form lipophylic complexes with alkaline metal cations (Na⁺, K⁺, and Ca⁺⁺) and transport these cations through the cell membrane and then affect a range of processes that depend upon ion transport, such as influx of sodium ions thus, causing severe osmotic damage. These drugs act against the extracellular stages of the life cycle of the *Eimeria*.

Resistance to anticoocidial drugs

In 1963, the World Health Organization (WHO) defined resistance as "ability of a parasite strain to multiply or to survive in the presence of concentrations of a drug that normally destroy parasites of the same species or prevents their multiplication". Resistance may be relative (increasing doses of the drug being tolerated by the host) or complete (maximum doses being tolerated by the host) (Chapman, 1982). Anticoccidial drugs added to the feed are a good preventive measure and are well adapted to large-scale use, but continous use of these drugs leads inevitably to the emergence of Eimeria strains that are resistant to all anticoccidial drugs, including ionophores (Allen and Fetterer, 2002). Resistance can develop quickly, as in the case of quinolones and clopidol, or it may take several years for the Coccidia to become tolerant, as in the case of polyether ionophores (McDougald, 2003).

Origin of resistance anticoccidial drugs

There are three key factors contributing to drug resistance in commercial poultry production (Jeurissen and Veldman, 2002):

(a). the intense and the continuous use of anticoccidial drugs in the poultry industry providing the basis for changing gene frequency through genetic selection.

(b). Coccidia is ubiquitous in poultry facilities and the large reproductive potential forms a large reservoir of genetic variation, which leads to the development of drug resistance.

(c). the life cycle of *Eimeria* is complex and involves a period of asexual and sexual stages. The nuclei of the asexual stage of *Eimeria* contain haploid complement chromosomes. Most drugs are active against this haploid stage, resulting in the removal of the most sensitive ones. This enables the more resistant ones to increase and thus rapidly becoming the dominant phenotype that spreads through the parasite population.

Poultry house management

The high standard of flock hygiene, sanitation and poultry farm management helps in achieving optimal benefit from the use of anticoccidial drugs in preventing coccidiosis (Chapman, 1997). However, the sanitary practice alone is inadequate for complete removal of coccidial oocysts. This is because of the following:

a) There have been too many failures in sanitary programs.

(b) Oocysts are extremely resistant to common disinfectants.

(c) House sterilization is never complete.

(d) An oocyst-sterile environment for floor-maintained birds could prevent early establishment of immunity and thus allow late outbreaks (McDougald, 2003).

Alternative for anticoccidial drugs

The constant and extensive use of the anticoccidial drugs for prevention and control of coccidiosis in poultry has been a major factor in the success of the industry. This beneficial use of anticoccidial drugs is associated with a widespread drug resistance of Coccidia in the United States, South America and Europe (McDougald, 2003). The first step of defence against development of resistance is the use of shuttle or dual programs (two or more drugs employed within a single flock) and frequent rotation of drugs (rotation of different compounds between flocks) (McDougald, 2003). The awareness by the consumers to avoid chemotherapeutics, the high development costs and low profits have not encouraged the pharmaceutical industry to develop new anticoccidial products (Chapman, 1997). Thus, alternatives progressively and currently been sought.

Dietary modulation of coccidia

The study of the interactions between diet composition and coccidia is **of** great interest. Before the availability of effective anticoccidial drugs, recommendations for coccidial control included the formulation of diets that were considered capable of reducing the severity of infection such as diets containing skimmed milk, buttermilk, or whey (Hussain, 2010). But due to the development of the efficient, low-cost anticoccidial drugs caused lesser interest in dietary modulation. However, with the appearance of resistance to coccidiostats, the consumers' concern, and the expected regulations to ban the coccidiostats in the future, the possible role of nutrition has recently attracted interest (Gabriel et *al.*, 2006).

Vitamins and minerals

Many vitamins changes the immune status and the resistance of the host against *Eimeria* infections. Many works reported that vitamin A deficiency depresses T-lymphocyte response to mitogens (Friedman and Sklan, 1989a) and reduces specific antibody production to protein antigens (Friedman and Sklan, 1989b). Recently, Dalloul *et al.* (2002) reported that vitamin A deficiency in chickens caused alteration in the IEL subpopulation, reduced the local cell-mediated immunity, and lowered the ability of birds to resist *E. acervulina* infection. Vitamin E and selenium generally improve resistance to coccidiosis.

improve weight gain (El-Boushy, 1988), and reduce mortality due to *E. tenella* infection (Colnago *et al.*, 1984b).

Vitamin C is known to possess immunity-enhancing effects in chickens and positive effect on birds' performance during coccidial challenge has been observed (Attia et al., 1979), but it had no effect on the lesion scores due to E. tenella or E. acervulina infection (Waldenstedt et al. (2000) found that feeding a diet with extra vitamins A, C, D₃, K, and selenium had no beneficial effects on the performance of chickens with subclinical infection caused by E. maxima, and E. tenella. Additional, the authors reported that performance in the birds supplemented with vitamins was even poorer than in birds fed the control diet. These results are inconsistent with previous work of Colnago et al. (1984b) who fed 0.025 or 0.50 mg Se/kg of diet, noted a reduced mortality, an increase in body weight, and improved resistance against E. tenella.

Products rich in n-3 fatty acid

The n-3 fatty acids are polyunsaturated fatty acids, the major fatty acids being eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), found abundantly in fish oil, and alpha-linolenic acid (ALA), being a major component of flaxseed oil. Allen et al. (1996a and 1996b; 1997a), they reported that fish-liver oil exerts favourable control on the course of coccidiosis. They also worked on a series of experiments using fish oil, flaxseed oil and flaxseed in diets fed to male chickens from day 1 of age through 3 weeks of age and challenged with E. tenella at 2 weeks of age. The researchers reported a significant reduction in caecal lesion scores and in the histological examination, a significant reduction in the degree of parasitaization and retarded development of the E. tenella parasite was observed. The suggested mode of action is that the n-3 fatty acids infiltrate the tissues of the parasite, which in turn become more susceptible to oxidative attack by phagocytic cells. Additionally, n-3 fatty acids have been shown to enhance the immune response in birds infected with E. tenella. However, little if any response was seen in the birds' performance, which is of most importance in poultry production. The n-3 fatty acids were proven ineffective against moderate or severe infection with E. maxima, and did not counteract reduced body-weight gain and lesion scores. The reason for the differences in response between these two Eimeria species to dietary n-3 fatty acids is not yet known (Allen et al., 1997a).

Betaine supplementation

Betaine supplementation has been shown to have positive effects on the water balance of broiler chicks stressed by high ambient temperature or coccidiosis

(Augustine and Danforth, 1999), and to protect the cells from osmotic stress, allowing them to continue regular metabolic activities under conditions that would normally inactivate the cell (Ko et al., 1994). Augustine et al. (1997) reported that betaine, in combination with the ionophore and salinomycin had a significant positive effect on the performance of chickens infected with E. acervulina, E. maxima, and E. tenella, the effect being greater than that mediated by betaine or salinomycin alone. Moreover, the combination resulted in a slight decrease in development and invasion of the epithelium by E. acervulina, while there was an increase in the invasion of E. tenella. However, the diet supplemented with betaine alone decreased the invasion of E. acervulina and E. tenella as indicated by the number of sporozoites present in the intestinal epithelium after the challenge. Klasing et al. (2002) later clarified this effect when they found that chickens fed betaine had more lymphocytes in the epithelium and in the lamina propria during E. acervulina infection than those fed the diet without betaine. This effect of betaine could result in more effective clearance of sporozoites that explain the decreased numbers in the epithelium as reported by Augustine et al. (1997), while Waldenstedt et al. (1999) found that betaine as a single feed supplement significantly improved chickens' body weight and tended to reduce the feed conversion ratio during coccidiosis infection. When betaine was used in the combination with the ionophore narasine, betaine showed no effects on birds' performance when Eimeria tenella was the major pathogenic species. The exact action of betaine is not fully understood. Augustine et al. (1997) suggested that betaine might increase performance in chickens infected by coccidiosis by inhibition of coccidial invasion and indirectly by supporting intestinal structure and function that could enhance the ability of the infected chickens to with stand coccidial infection.

Whole wheat

The use of whole grains in broiler feeds is a frquent practice in Europe (Forbes and Covasa, 1995). Many works indicated that offering broilers a whole cereal grains and balanced pellets greatly reduced the severity of infection with Eimeria as judged based on the reduction in output of oocysts (Cumming, 1987; 1992; 1994). Waldenstedt (1998) and Banfield (1999; 2002) investigated the effects of whole wheat inclusion in broiler feeds with or without access to grit, and they observed no significant differences in faecal oocyst yields, lesion scores, or performance in birds infected with E. tenella or E. maxima. They concluded that the decrease in output of oocysts as caused by inclusion of whole cereals in the diet, and observed in the previous experiments, was not due to the increase in the viscosity of the digesta or the crushing of oocysts by an active gizzard and that whole

wheat addition to the diet of broiler chickens provides no control of coccidiosis.

Exogenous enzymes

The use of exogenous enzymes in food processing started as early as 1900 and the majority of the enzymes have been derived from fermentation by microorganisms (Clarkson et al., 2001). When broilers fed diet rich in wheat, barley, oat, or rye, the presence of non-starch polysaccharides (arabinoxylans and β-glucans) can give rise to high viscosity in the small intestine thereby decreasing the contact of endogenous digestive enzymes and its substrates. This results in a decrease in absorption and broilers' performance, and increase in the size of the GIT, pancreas, and the liver (Wang et al. 2005; Yim et al., 2011) reported an improvement in broilers' performance, a reduction in the size of digestive organs and the GIT size, and an increase in the total volatile fatty acids in the caecum, when a wheat-based diet was supplemented with the 200 mg exogenous enzymes xylanase or β-glucanase per kg feed. Addition of exogenous xylanase has been found to improve the performance and to reduce ileal digesta viscosity in Eimeria-infected birds (Morgan and Bedford, 1995). It was concluded that intestinal viscosity and the size of the gizzard might affect the severity of the Eimeria infection. However, others did not observe effects of increased intestinal digesta viscosity on the severity of the Eimeria infection, when a large increase in viscosity was being induced by the inclusion of carboxymethyl cellulose in the feed (Banfield et al., 2002; Waldenstedt et al., 2000).

Electromagnetic fields

Electromagnetic fields (EMF) have been in use as therapeutic modalities for at least 40 years. It is well known that selected electromagnetic fields (EMF) can have beneficial effects on bones, joints, and neurological disorders, as well as wound healing (Montesinos et al., 2000). Anti-inflammatory aspects of EMF exposure have been reported to be due to the activation of AA adenosine receptors in human neutrophils (Vallbona and Richard, 1999). Generally, inflammation is characterized by massive infiltration of T lymphocytes, neutrophils and macrophages into the damaged tissue (Gessi et al., 2000). In earlier studies, it has been reported that EMF mediate positive effects on wound healing, controlling the proliferation of inflammatory lymphocytes, and therefore demonstrating beneficial effects on inflammatory disease (Jasti et al., 2001). Many authors (Blank et al., 1992; Goodman et al., 1994; Mevissen et al., 1998) have discussed the effects initiated by various EMF signals and stated that EMF causes stress at the cellular level and that this leads to production of cytokines and

consequently a biological response, including an immune response. Recently, Elmusharaf *et al.* (2006) reported that exposure of broiler chickens to EMF antagonized the effects of coccidial infection in birds infected with a mixture of sporulated oocysts containing *E. acervulina*, *E. maxima*, and *E. tenella*. It was found that the severity of the intestinal lesions mediated by *E. acervulina* and *E. maxima* were reduced in the EMF-treated birds.

Natural additive and herbs

A number of natural herbs have been tested as anticoccidial dietary additives. Artemisinin isolated from Artemisia annua, is a naturally occurring endoperoxide with antimalarial properties. It has been found effective in reducing oocyst output from both E. acervulina and E. tenella infections when fed at levels of 8.5 and 17 ppm in starter diets (Allen et al., 1997b). The mode of action is thought to involve oxidative stress. Extracts from 15 Asian herbs were tested for anticoccidial activity against *E. tenella* and the test criteria were survival rate. bloody diarrhoea symptoms, lesion scores, oocyst output, and technical performance. Practical applications of these findings, such as the use of the products in starter rations or combinations of them with current anticoccidials or vaccines, appear possible and need to be investigated (Allen and Fetterer, 2002).

Therefore, chemoprophylaxis and anticoccidial feed additives have controlled the disease but the situation has been complicated by the emergence of drug resistance (Abbas et al., 2011a) and their potentially toxic effects on the animal health (Nogueira et al., 2009). Furthermore, drug or antibiotic residues in poultry products may be potentially hazardous to consumers. Another approach for coccidiosis control is the vaccination of birds with live Eimeria oocysts, but, in cases of poor management, these vaccines can trigger severe reactions that may affect the performance of flocks, mainly in broilers because of their rearing period (Chapman, 2000). As a result of this drawback of live vaccines. attenuated vaccines (with reduced pathogenicity) have been developed, but these are expensive to produce.

Botanicals and coccidiosis

Cost effective alternative strategies are being tried for more effective and safer control of avian coccidiosis (Abbas *et al.*, 2011b). The use of botanicals has played a strong role in the control of avian coccidiosis, as they are not only natural products but may include new therapeutic molecules to which immunity has not yet developed. The use of botanicals as anticoccidial reduces, therefore, holds possible as an alternative in the control of coccidiosis. Aloes are believed to have several medicinal properties and are used to treat various ailments. There are more than 360 known Aloe species, but the most recommended type of Aloe in controlling coccidiosis is Aloe excelsa (Gadzirayi et al., 2005). Gadzirayi et al. (2005) revealed that the anticoccidial effects of A. excelsa were comparable with sulphachlopyrazine sodium monohydrate in terms of improved live weight gains and reduction in oocyst output in infected broiler chickens. Other species of Aloe plant such as Aloe vera have also been reported to have anticoccidial activities. Aloe vera treatments show toxic effects on the intestinal tract by benefiting microflora and reducing bowel putrefaction as well as reducing inflammation (Bland, 1985). An in vitro study was undertaken to determine the effect of three concentrations (15%, 30%, and 45%) of A. vera and A. spicata on the inhibition of the sporulation of avian coccidia oocysts (Marizvikuru et al., 2006). The two extracts showed a concentration-dependant anticoccidial effect, however, A. spicata inhibited sporulation to a greater extent than A. vera. In another study (Yim et al., 2011) dietary supplementation of A. vera resulted in significantly lower gut lesion scores and reduced faecal oocyst shedding of E. maxima in broiler chickens. These authors (Yim et al., 2011) suggested that reduced faecal oocyst shedding, a protective role against Eimeria infection, in Aloe-based chicken diets could be associated more with cell-mediated responses than antibody responses.

Artemisia species

The most common species is Artemisia annua which has been reported for its antiparasitic activities. A. annua is a common type of wormwood botanical anticoccidials: Abbas et al. (2004) and Oh et al. (1995) conducted the first experimental trial to evaluate the anticoccidial activity of A. annua extracts against E. tenella in chickens. A. annua extracts showed the anticoccidial activity in terms of improved weight gain, improved feed conversion ratio and reduced lesion scores in infected chickens. Later, Allen et al. (1997a) reported a significant anticoccidial effect of A. annua against E. tenella, measured as reduced lesion scores, when fed to broiler chickens for three weeks as dried leaves at a dietary concentration of 5% (equivalent to 17 ppm pure artemisinin). The pure form of artemisinin, fed for a period of 4 weeks at levels of 2, 8.5 and 17 ppm, significantly decreased oocyst output from single and dual species infection with E. tenella and E. acervulina. Moreover, artemisinin isolated from A. sieberi was also found to be effective against E. tenella and E. acervulina but not against E. maxima (Arab et al., 2006). So far, a limited amount of work has been carried out to determine the anticoccidial effect of Artemisia spp. In layer chickens. B risibe et al. (2008)

studied the effect of feeding 20% dried pulverized *A. annua* leaves against *E. tenella* both in broiler and layer chickens. The anticoccidial effects of diets containing *A. annua* leaves were almost equal to the commercial anticoccidials both in broiler and layer chickens. The proposed mechanism of action of artemisinin involves cleavage of endoperoxide bridges by iron producing free radicals (hypervalent iron-oxo species, epoxides, aldehydes, and dicarbonyle compounds) which damage biological macromolecules causing oxidative stress in the cells of the parasite (Allen *et al.*, 1998).

Azadirachta indica (neem) plant

Azadirachta indica (neem) plant is commonly available in Asian and African countries and is well known in the therapy of a number of infectious diseases including coccidiosis. Neem fruit, at a concentration of 150 g/50 kg feed, has been found to have anticoccidial effects against E. tenella infection by reducing oocyst excretion and mortality in broiler chickens (Tipu et al., 2002). In addition to the anticoccidial effect of neem fruit, some reports have shown the anticoccidial activity of an aqueous extract of neem leaves against E. tenella alone (Takagi et al., 2006) as well as in a mixed infection (Biu et al., 2006), which was comparable to the commercial anticoccidials amprolium and baycox. The exact mechanism of action of neem against coccidian parasites is unknown, but a report by the National Research Council (1992) suggested that aqueous neem leaf extract, when taken orally, produces an increase in red cells, white blood cells and lymphocyte counts thus enhancing the cellular immune response, increasing antibody production and so most pathogens can be removed before they cause the symptoms associated with disease. Further study is needed to determine the maximum safe levels of neem supplementation because the higher doses, due to its bitterness, may show adverse effects on feed intake which will change the performance parameters of birds.

Beta vulgaris

The beneficial effects of incorporating sugar beet (*Beta vulgaris*) solids in animal feeds on livestock growth and overall performance have been known for a long time. One of the active ingredients is betaine which protects cells against osmotic stress by stabilizing cell membranes through the maintenance of osmotic pressure in the cells.

Curcuma longa

Curcuma longa L. (Zingiberaceae), commonly known as turmeric, is a medicinal plant widely used and cultivated in the tropical regions. In developing countries like Pakistan, poultry farmers provide turmeric powder as a

feed additive for the control of coccidiosis in broilers (Abbas et al., 2010). The active compound of turmeric is the phenolic compound curcumin, which has been shown have antioxidative, anti-inflammatory to and immunomodulatory properties (Allen et al., 1998). In an experimental study, the anticoccidial effect of dietary supplementation of 1% curcumin was observed in chickens after infection of E. maxima and E. tenella species. Improved weight gain, reduced lesion scores and oocyst counts were shown only against E. maxima. A significant reduction of plasma NO2⁻ and NO3⁻ was found only in E. maxima-infected and curcumin-treated birds, and hence provides a possible explanation for the difference in anticoccidial activity found for both Eimeria species (Allen et al., 1998). Later, Abbas et al. (2010) reported that dietary supplementation with 3% C. longa powder was effective against a mild infection of E. tenella. The proposed mechanism of action of C. longa (curcumin) involves the induction of oxidative stress against coccidia. Further researches are required to determine the possible anticoccidial activity of different concentrations of whole C. longa and its active ingredient curcumin against different Eimeria species in poultry.

Echinacea purpure

Echinacea and its different preparations contain a variety substances such of active as flavonoids. polysaccharides, glycoproteins, alkamides, cinnamic acids, essential oils and phenolic compounds (Liu et al., 2007; Zhai et al., 2007) which are effective in treatment of various ailments and are proven to be beneficial in promoting immunity (Bauer, 1999). This plant is known to have anti-inflammatory, antioxidant and immunomodulating properties that may be linked to its anticoccidial effects (Zhai et al., 2007). In an experimental trial (Allen, 2003), ground root preparations of E. purpurea (0.1% -0.5%) were offered to broilers for two weeks which ameliorated weight gain reduction and birds had fewer coccidial lesions after a mixed challenge infection with E. acervulina, E. maxima, E. tenella and E. necatrix. The exact mechanism of action is still unknown. but because of its antioxidant properties Echinacea therapy may induce a state of oxidative stress against Eimeria species.

Origanum vulgare

The essential oils of *Origanum vulgare* are well known for their antiprotozoal activity (Milhau *et al.*, 1997). Giannenas *et al.* (2003) carried out a study to examine the effect of dietary supplementation of *O. oregano* (*O. vulgare*) essential oil on performance of broiler chickens experimentally infected with *E. tenella*. It was concluded that *O. oregano* essential oils, mainly carvacrol and thymol, had anticoccidial effects against *E. tenella*. Some studies suggest that vaccination against coccidiosis, in combination with *O. oregano* containing compounds, may be an alternative control method for intestinal health in chickens (Waldenstedt, 2000). In addition, some works suggested the use of dried oregano leaves as a natural herbal growth promoter for early maturing of birds (Bampidis *et al.*, 2005). The dietary supplementation of *O. oregano* containing plants like *O. vulgare*, thus, seems equally effective for maintaining the performance and reducing pathogenic parameters in infected birds.

Saccharum officinarum

Sugar cane (Saccharum officinarum) extract (SCE), a well known natural immunostimulant, is reported to have protective effects against E. tenella infection in chickens (El-Abasy et al., 2003). Some studies (Hikosaka et al., 2007) showed a significant increase in the number of IgM- and IgG plaque-forming cell responses of peripheral (PBL). blood leukocvtes intestinal leukocvtes. splenocytes, in addition to significantly higher phagocytic activity of PBL and antibody responses in chickens that had been orally administered with either sugar cane extract (SCE) or the polyphenol-rich fraction (PRF). Most recently. Awais et al. (2011)reported the immunotherapeutic effects of sugar cane extract against mixed Eimeria species in broiler chickens. The results of these researches suggested that sugar cane extract has an immunostimulating effect in chickens and their administration may augment protective immunity against coccidiosis.

Triticum aestivum

The supplementation of whole *Triticum aestivum* (wheat) grains in broiler feeds is common practice in Europe (Forbes and Covasa, 1995) because dietary fibre antioxidants may actually quench the soluble radicals that are continuously formed in the intestinal tract (Bao and Choct, 2010). Many reports (Allen et al., 1998) have noted the protective effects of whole cereal grains against coccidiosis in broiler chickens measured as a reduction of oocyst output. However, Waldenstedt et al. (1998) and Banfield et al. (2002) demonstrated the effects of whole wheat inclusion in broiler feeds with or without access to grit, and observed no significant differences in oocyst counts of mixed Eimeria species. They concluded that the reduction in output of oocysts by supplementation with whole cereals in the diet was not a result of the crushing of oocysts by an active gizzard or the increase in the viscosity of the digesta. Furthermore, they concluded that the whole wheat supplementation provided no control of coccidiosis in broiler chickens.

Yucca schidigera

Plant extracts with high saponin content are a good source of natural antimicrobial compounds. Yucca

schidigera is a major source of natural saponins that cause the inhibition of protozoan development by interacting with the cholesterol present on the parasite cell membrane, thus resulting in parasite death (Wang et al., 1998). Several studies have shown a beneficial and synergistic effect between the coccidiosis vaccine and the Y. schidigera extract in improving weight gains, feed conversion ratio and maintaining the integrity of the intestinal villi in chickens (Alfaro et al., 2007). These improvements in the performance parameters of birds may be the result of the potential of saponins (extracted from the Y. schidigera) to improve the absorption of nutrients by the intestinal mucosal surface (McAllister et al., 1998). These saponins are steroidal glycosides with strong surfactant activity, reducing the superficial tension of fluids and allowing better absorption of nutrients by the intestinal epithelium.

Treatment programme for coccidiosis control

Shuttle or dual program

The use of one product in the starter and another in the grower feed is called a shuttle program in the US and a dual program in other countries. The shuttle program usually is intended to manage coccidiosis control. Intensive use of the polyether ionophore drugs for many years produced strains of coccidia in the field that have reduced sensitivity to the ionophores. It is a common practice to use another drug such as nicarbazin or halofuginone in the starter or grower feed to bolster the anticoccidial control and take some pressure off the ionophore. The use of shuttle programs is thought to reduce buildup of drug resistance. In 1988, approximately 80% of the US producers used some type of shuttle program (Saif et al., 2003), in which two compounds usually a synthetic agent (such as Incarbazin) and lonophore (such as Salinomycin) are employed successively in single flock. During 1999 in the US, shuttles involving synthetic drugs followed by lonophores were employed by approximately 25% of broiler complexes (Chapman, 1999).

Future hazards of anticoccidial residues in broilers meat tissues to man

Anticoccidial drugs play an important role in animal production, especially in intensive broiler production. They are used for disease prevention and therapy, as well as for their growth-stimulating effect. These drugs add to the recovery of animals from protozoal endoparasites, increase breeding productivity and decrease economic losses caused by coccidiosis. However, mass and long-term administration of these substances has brought problems connected to the occurrence of unfavorable residues in animal products for

human consumption. The residues of anticoccidial drugs represent a potential risk to human health. Proper administration of these substances will ensure minimal content in animal products that will minimize health risks. To protect the health of consumers against the entry of residues of anticoccidial drugs into the food chain, it is necessary to monitor drug residues in animals for food production and for valid veterinary hygienic legislation to pay appropriate attention to this group of drugs (Jevinova et al., 2010). Some anticoccdial drugs such as ionophores are not used in human medicine due to their potent cardiovascular effects. Ensure that recommended withdrawal periods are observed, it has been suggested that residues of ionophores in food could cause adverse health effects in humans as a result of their cardiovascular toxicity. Since poultry litter is extensively applied to land as manure ionophores and their degradation products may readily enter the soil and water environment. Some studies have been published regarding the environmental fate of ionophores and thus it is difficult to assess their potential impact. Biodegradation studies have indicated that monensin is degradable under aerobic conditions with or without manure and in manure piles within 33 days. Degradation in manure piles under anaerobic conditions was less extensive. It should be assumed that the microbiological activity of soil will be affected, at least initially following application of ionophore containing manure and this may affect nutrient release. Direct effects on plants are not expected except that an inhibitory effect on apple pollen has been reported for monensin. lonophores may cause irritation and allergic reaction in humans and protective clothing and dust masks should be used whenever there is a risk of exposure. Alarming human health hazards, the emergence of resistant strains of bacteria in birds and passage of these or other resistant factors via food chain from birds to human beings. Use of antibiotics at subtherapeutic levels in broiler feeds may lead to the development of resistant strains of bacteria in the bird. While consuming the meat containing residues of antibiotics over protracted period may lead to emergence of resistant gut flora and pathogens in human beings such as *E.coli* and *Salmonella* spp. Production of harmful effects from direct toxicity or from the allergic reactions (hypersensitivity reactions) in persons already sensitized to them. Certain drugs and or their metabolites possess carcinogenic potential e.g.sulphamethazine residues containing meat preserved with sodium nitrate may develop a triazine complex that has a considerable carcinogenic potential. Prolonged ingestion of tetracycline present in the broiler meat has detrimental effects on teeth and bones in growing children. Some tetracyclines, most therapeutic antibiotics are relatively heat stable and resist both pasteurization and cooking process (Javaid et al., 2000). Adverse effects on the cartilage development in children may result if the broiler meat contains quinolone residues. Drug residues may destroy the useful

micro floraof gastrointestinal tract, especially in children and hence lead to enteritis (diarrhoea, dysentery) like problems. Super infections that refer to as fresh invasion or re40 infection added to an already existing infection. Candidiasis caused by Candida albicans is a classical example of the unhealthy consequence of the use of antibiotics. Residues of chloramphenicol are known to cause bone marrow depression and problems like anaemia in consumers (Javaid et al., 2000). In addition, there are many safe veterinary drugs and none withdrawal period like, amprolium (Donald and Pharm, 1999). Factors that leading to the occurrence of antibiotics residues in animal products are; failure to observe drug withdrawal period, extended usage or excessive dosages of antibiotics, non-existence of restrictive legislation or their inadequate enforcement, poor records of treatment, failure to identify treated animals, lack of advice on withdrawal periods, off-label use of antibiotics, availability of antibiotics to lav persons as over the counter drugs in the developing countries, the addition of antibiotics as milk preservatives during hauling from the centre of production(villages) to the centers of consumption (cities or factories) and lack of consumer awareness about the magnitude and human health hazards associated with antibiotic residues in the food of animal origin (Javaid et al., 2000).

Anticoccidial testing in birds

Three types of tests are generally used to study anticoccidial drugs in broiler birds. These are; Battery tests: Done 7-14 days, tests with birds in wire cages, Standard grow-out test: Done 6-8 weeks tests on birds in floor pens and Full-scale tests which is done in commercial facilities. Each type has a different objective and value to the investigator for example; the battery test is used most effectively to measure the efficacy of an anticoccidial drug against a variety of field isolates of Coccidia. This is an efficient and relatively inexpensive testing procedure. The floor- pen test is an intermediate testing procedure with a primary goal of providing statistically useful performance data under controlled conditions. Individually, the predictive value of each test limited. One cannot, for example, confidently is extrapolate performance data in a seven-day battery test to market weight, nor can one predict from a few commercial trials the efficacy of an anticoccidial agent in preventing the lesions of major species of Coccidia. As awhole, when properly conducted, the tests complement one another by providing a comprehensive picture of the efficacy, safety and economic value of an anticoccidial agent (Conway and Mckenzie, 2007).

CONCLUSION

Treatment and control of the disease are beset with several problems prominent of which is the poor

understanding of the immune response. Another factor is the increasing incidence of drug resistance in field strains of *Eimeria*. Furthermore, due to health awareness there is increasing concern regarding drug residues in poultry products and growing pressure from Government and consumer on the production of drug-free poultry products.

REFERENCES

- Abbas RZ, Iqbal Z, Blake D, Khan MN, Saleemi MK (2011a). Anticoccidial drug resistance in fowl coccidia: the state of play revisited. *World's Poultry Science Journal*, 67: 337-350.
- Abbas RZ, Iqbal Z, Khan MN, Zafar MA, Zia MA (2010). Anticoccidial activity of *Curcuma longa L*. in Broiler Chickens. *Brazilian Archives of Biology and Technology*, 53: 63-67.
- Abbas RZ, Munawar SH, Manzoor ZA, Iqbal Z, Khan MN, Saleemi MK, Zia MA, Yousaf A (2011b). Anticoccidial effects of acetic acid on performance and pathogenic parameters in broiler chickens challenged with *Eimeria tenella*. *Pesquisa Veterinária Brasileira*, 31: 99-103.
- Alfaro DM, Silva AVF, Borges SA, Maiorka FA, Vargas S, Santin E (2007). Use of Yucca schidigera extract in broiler diets and its effects on performance results obtained with different coccidiosis control methods. *Journal of Applied Poultry Research*, 16: 248-254.
- Allen PC, Fetterer RH (2002). Recent advances in biology and immunobiology of *Eimeria* species and in diagnosis and control of infection with these coccidian parasites of poultry. *Clinical Microbiology Reviews*, 15: 58-65.
- Allen PC, Danforth HD, OA, Levander OA (1996a). Diet high in n-3 fatty acids reduces caecal lesion scores in chickens infected with *Eimeria tenella. Poultry Science*, 75: 179-185.
- Allen PC, Danforth HD, Levander OA (1996b). Association of lower plasma carotenoid with protection against caecal coccidiosis by diet high in n-3 fatty acids. *Poultry Science*,75: 966-972.
- Allen PC, Lydon J, Danforth HD (1997b). Effects of components of *Artemisia annua* on coccidia infections in chickens. *Poultry Science*, 76:1156-1163.
- Allen PC (2003). Dietary supplementation with Echinacea and development of immunity to challenge infection with coccidia. *Parasitology Research*, 91: 74-78.
- Allen PC, Lydin J, Danforth, HD (1997a). Effects of components of Artemisia annua on coccidia infections in chickens. *Poultry Science*, 76: 1156-1163.
- Arab HA, Rahbari S, Rassouli A, Moslemi MH, Khosravirad F (1995). Determination of artemisinin in *Artemisia sieberi* and anticoccidial effects of the plant extracts in broiler chickens. *Tropical Animal Health and Production*, 38: 497-503.
- Attia M, EL S, Fathy IM, Attia AMN (1979). The effect of dietary vitamin C on the severity of coccidiosis in Fayomi chicks. *Veterinary Medical Journal*, 20: 65-74.
- Augustine PC, Danforth HD (1999). Influence of betaine and salinomycin on the intestinal absorption of methionine and glucose and on the ultrastructure of intestinal cells and parasite development stages in chicks infected with *Eimeria acervulina*. *Avian Diseases*, 43: 89-97.
- Augustine PC, Mcnaughton JL, Virtanen E, Rosi L (1997). Effect of betaine on the growth performance of chicks inoculated with mixed cultures of Avian *Eimeria species* and on invasion and development of *Eimeria tenella* and *Eimeria acervulina in vivo* and *in vitro*. *Poultry Science*, 79: 802-809.
- Awais MM, Akhter M, Muhammed F, Haq AU, Anwar MI (2011). Immunotherapeutic effects of some sugar cane (*Saccharum officinarum L.*) extracts against coccidiosis in industrial broiler chickens. *Experimental Parasitology*, 128: 104-110.
- chickens. *Experimental Parasitology*, 128: 104-110. Bampidis VA, Christoudoulou V, Florou-panri P, Christaki E, Chatzpoulou PS, Tsiligianni T, Spais AB (2005). Effect of dietary dried oregano leaves on growth performance, carcass characteristics and serum cholesterol of female early maturing turkeys. *British Poultry Science*, 46: 595-601.

Banfield M, Forbes J (1999). Feed content and structure effects on coccidiosis: In proceedings of the 12th European Symposium on

Poultry Nutrition, WPSA, Veldhoven, The Netherlands, Pages 213-222.

- Banfield MJ, Kwakkel RP, Groenveld M, Ten Doeschate RA, Forbes JM (1999). Effects of whole wheat substitution in broiler diets and viscosity on a coccidial infection in broilers. *British Poultry Science*, 40: S58-S60.
- Banfield MJ, Kwakkel RP, Forbes JM (2002). Effects of wheat structure and viscosity on coccidiosis in broiler chickens. *Animal Feed Science and Technology*, 98: 37-48.
- Bao YM, Choc M. (2010). Dietary NSP nutrition and intestinal immune system for broiler chickens. *World's Poultry Science Journal*, 66: 511-518.
- Bauer R (1999). Chemistry, analysis and immunological investigations of *Echinacea*.
- Biu AA, Yusuf SD, Rabo JS (2006). Use of Neem (*Azadirachta indica*) Aqueous extract as a Treatment for Poultry coccidiosis in Borno state, Nigeria. *African Scientist*, 7 (3) : 147-153.
- Bland J (1985). Effect of orally consumed Aloe vera juice on gastrointestinal function in normal humans. *Preventive Medicine*, 14: 152-154.
- Blank M, Khorkova O, Goodman R (1992). Changes in polypeptide distribution stimulated by different levels of electromagnetic and thermal stress. *Bioelectrochemical Bioenergy*, 3: 109-114.
- Brisibe EA, Umoren EU, Owai PU, Brisibe F (2008). Dietary inclusion of dried *Artemisia annua* leaves for management of coccidiosis and growth enhancement in chickens. *African Journal of Biotechnology*, 7: 4083-4092.
- Brussels (1991). The rules governing medical products in the European Community IV, Commission of the European Community.
- Chandrakesan P, Muralidaran K, Kumar VD, Ponnudarai, G, Harikrishnan TJ, Rani KSVN (2009). Efficacy of Herbal Complex against Caecal coccidiosis in Broiler Chickens. *Veterinarski Arhiv*, 79 (2): 123-199.
- Chapman HD (1982). Anticoccidial Drug Resistance. Pages. 430-481 in The Biology of the Coccidia. P. L. Long, ed. University Park Press: Baltimore. .
- Chapman HD (1997). Biochemical, genetic and applied aspects of drug resistance in *Eimeria* parasite of the fowl. *Avian Pathology*, 26: 221-244.
- Chapman HD (1999). Drug program and immunity applications for drug withdrawal. *Avian Pathology*, 28 : 521-535.
- Chapman HD (2000). Practical use of vaccines for the control of coccidiosis in the chicken. *World's Poultry Science Journal*, 56: 7-20.
- Clarkson K, Jones B, Bott BR, Bower B, Chotani G, Becker T (2001). Enzymes: screening, expression, design, and production. Pages 325-352, in Enzymes in Farm Animal Nutrition. M. R. Bedford, ed. CABI Publication. Wilsshire.
- Colnago GL, Jansen LS, Long PL (1984a). Effect of selenium and vitamin E on the development of immunity to coccidiosis in chickens. *Poultry. Science*, 63 : 1136-1143.
- Conway DP, Mckenzie ME (2007). Poultry Coccidiosis Dignostic and Testing Procedures, Third Edition, Blackwell Publishing.
- Cumming RB (1987). The effect of dietary fibre and choice feeding on coccidiosis in chickens. *Proceedings* 4 AAAP. Animal Science Congregation, Page 216.
- Cumming RB (1992). The biological control of coccidiosis. 19 World Poultry Congregation, 2: 425-428.
- Cumming RB (1994). Opportunities for whole wheat grain feeding. 9 *European Poultry Conference*, 2: 219-222.
- Dalloul RA, Lillehoj HS, Sheken TA, Doerr JA (2002). Effect of vitamin A deficiency on host intestinal immune response to *Eimeria acervulina* in broiler chickens. *Poultry Science*, 81 : 1509-1515.
- Dalloul R, Lillehoj HS, Shellem TA, Doerr JA (2003). Enhanced mucosal immunity against *Eimeria acervulina* in broilers fed Lactobacillus-based probiotic. *Poultry Science*, 82: 62-66.
- Donald C, Pharm D (1999). Veterinary drug hand book. 3rd Edn, White Bear Lake, Minnesota, USA.
- El-Abasy M, Motbu M, NA KJ, Shimura K, Nakamura K, Koge K, Onodera T, Hirota Y (2003). Protective effects of sugar cane extracts (SCE) on *Eimeria tenella* infection in chickens. *Journal of Veterinary*

Medical Science, 65: 865-871.

- El-Boushy AR (1998). Vitamin E affects viability and immune response of poultry. *Feed Stuff, 60* : 20-26.
- Elmusharaf MA, Bautista V, Nollet L, Beynen AC (2006). Effect of a mannanoligosaccharide preparation on *Eimeria tenella* infection in broiler chickens. *International Journal of Poultry Science*, 5: 583-588.
- Forbes JM, Covasa M (1995). Application of diet selection by poultry with particular reference to whole cereals. *World's Poultry Science Journal*, 5: 149-165.
- Friedman J, Sklan D (1989a). Impaired T lymphocytes immune response in vitamin A depleted rats and chickens. *British Nutitionr*, 62: 39-449.
- Gabriel I, Mallet S, Leconte M (2006). Effect of whole wheat feeding on the development of coccidial infection in broiler chickens until marketage. *Animal Feed Science and Technology*, 129: 179-303.
- Gadzirayi CT, Mupangwa JF, Mutandwa E (2005). Effectiveness of Aloe excelsa in controlling coccidiosis in broilers. *Journal of Sustainable Development in Africa,* 7: issue 1. 10-14.
- Gessi S, Varani K, Merighi S, Ongini E, Borea PA (2000). A adenosine
- receptors in human peripheral blood cells. *British Journal Pharmacology*, 129: 2-11.
- Giannenas PM, Florou-Paneri M, Papazahariadou E, Christaki, E., Botsoglou, N.A. and Spais A.B. (2003). Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with *Eimeria tenella*. Archives of Animal Nutrition, 57: 99-106.
- Goodman R, Blank M, Lin H, Dai R, Khorkova O, Soo L, Weisbrot D, Henderson A (1994). Increased levels of hsp70 transcripts induced when cells are exposed to low frequency electromagnetic fields. *Bioelectrochemical Bioenergy*. 33: 115-120.
- Guo-Zhen F, Jin-Xing H, Shuo W (2006). Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to highperformance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. *Journal of Chromatogrphy*, 1127: 1-2: 15: 12-17.
- Hikosaka K, El-Abasy M, Koyama Y, Motobu M, Koge K, Isobe T, Kang CB, Hayashidani H, Onodera T, Wang PC, Matsumura M, Hirota Y (2007). Immunostimulating effects of the polyphenol-rich fraction of sugar cane (*Saccharum officinarum L*.)
- Hussain AA (2010). Prevalence of caecal coccidiosis among broilers in Gaza strip. A Thesis submitted in Partial Fulfillment of the Requirement for the Degree of Master of Biological Sciences.
- Jasti AC, Wetzel BJ, Aviles H, Vesper DN, Nindl G, Johnson MT (2001). Effect of a wound healing electromagnetic field on inflammatory cytokines gene expression in rats. *Biomedical Science Instrumentation*. 37: 209-214.
- Javaid A, Awan A, Athar M (2000). Rational use of drugs in broiler meat production. *International Agricultural and Biological Journal*, 1560–8530-02–3–269–272.
- Jeurissen SHM, Veldman B (2002). The interaction between feed (components) and *Eimeria* infection in poultry health. in Nutrition and Health of the Gastrointestinal Tract. M. C. Blok, H.A. Vahl, L. de Braak, G. Hemke, and M. Hessing, eds. Wageningen Academic Publisher, Wageningen, The Netherlands. Pages 152-182.
- Jevinova P, Laciakova A, Pipova M, Mate D, Kozarova I (2010). Legislative treatment of anticoccidial drugs and their residues in poultry personal. *Slovakia University Veterinary Journal.*, 73:(41):81-87. HACCP manual monensin and salinomycin in veterinary medicine – overview: http://www.bioagrimix.com/haccp, 12/1/2010.
- Khan MA, Younas M, Khan I, Abbas RZ, Ali M (2008). Comparative efficacy of some herbal and homeopathic preparations against coccidiosis in broilers. *International Journal of Agriculture and Biology*, 10: 358-360.
- Ko R, Smith LT, GM Smith (1994). Glycine betaine confers enhance osmotolerance and cryotolerance on *listeria monocytogenes*. *Journal* of Bacteriology. 176: 426-431.
- Leu, S. (1999). Planning your attack against coccidiosis. *Poultry World*, 15 : 111-113.
- Liu YC, Zeng JG, Chen BO, Yao SZ (2007). Investigation of phenolic constituents in *Echinacea purpurea* grown in China. *Planta Medica*, 73: 1600-1605.
- Marizvikuru M, Evison B, Michael C, Tiniyoko EH (2006). The in vitro

studies on the effect of Aloe vera (L.) Webb. and Berth.) and Aloe spicata (L. f.) on the control of coccidiosis in chickens. *International Journal of Applied Research in Veterinary Medicine*, 4: 128-133.

- Mcallister TA, Wang Y, Hristov AN, Olson ME and Cheeke PR (1998). Applications of *Yucca schidigera* in livestock production. *Eimeria tenella Proceedings of 33rd Pacific Northwest Animal Nutrition Conference*, Canada, pp. 109-119.
- McDougald LR (2003). Coccidiosis. in Poultry Diseases, Pages 974-991.
- Mevissen M, Haussler MM, Szamel M, Emmendorffer A, Thun-Battersby S, Loscher W (1998). Complex effects of long term 50 Hz magnetic field exposure in vivo on immune functions in female Sprague-dawley rats depend on duration of exposure. *Bioelectromagnetics*, 19 : 259-270.
- Milhau G, Valentin A, Benoit F, Mallie M, Bastide JM, Pelissier Y, Bessiere JN (1997). *In vitro* antimalarial activity of eight essential oils. *Journal of Essential Oil Research*, 9: 329-333.
- Ming-Ming Z, Man-Yu Z, Guang-Yu P, Yu-Qi F (2008). Monitoring of sulfonamide antibacterial residues in milk and egg by polymer monolith microextraction coupled to hydrophilic interaction chromatography/mass spectrometry. *Analytica Chimica Acta. Journal*, 625: 2: 12: 160-172.
- Montesinos MC, Yap JS, Desai A, Posados I, Mccrary CT, Cronstein BN (2000). Reversal of the anti-inflammatory effects of methotrexate by the non selective adenosine receptor antagonist theophylline and caffeine: evidence that the anti-inflammatory effects of methotrexate are mediated via multiple adenosine receptors in rat adjuvant arthritis. *Arthritis Rheum*, 43: 656-663.
- Morgan AJ, Bedford MJ (1995). Advances in the development and application of feed enzymes. *Australia Poultry Symposium*, 7: 109-115.
- National Research Council (1992). Neem: a tree for solving global problems. pp.115 (National Academy Press, Washington D.C.).
- NogueiraVA, Franca TN, Peixoto PV (2009). lonophore poisoning in animals. *Pesquisa Veterinária Brasileira*, 29: 191-197.
- Oh HG, Youn HG, Noh HJ, Jang JW, Kang YB (1995). Anticoccidial effects of artemisin on the *Eimeria tenella*. Korean Journal Veterinary Research, 35: 123-130.
- Saif Y, Barnes A, Glisson F, Mcdougald L, Swaye D (2003). Diseases of Poultry. 12th Edn, Iowa state press, USA.
- Shirley MW, Smith AL, Tomley FM (2005). The biology of avian *Eimeria* with emphasis on Geir condrop by Vaccination. *Advance Parasitology*, 60:285-330.
- Takagi M, Kuriyagawa T, Hirose J, Ryuno T, Imura Y, Okamoto K, Omata Y, Yasui T, Deguchi E (2006). Anticoccidial Efficacy of Natural Herbs Extracts in calves. *Journal of Animal and Veterinary Advances*, 12:1096-1100.
- Tipu MA, Pasha TN, Ali Z (2002). Comparative efficacy of salinomycin sodium and neem fruit (*Azadirachta indica*) as feed additive anticoccidials in broilers. *International Journal of Poultry Sciences*, 1: 91-93.
- Vallbona C, Richard T (1999). Evolution of magnetic therapy from alternative to traditional medicine. *Physiological Medical .Research,*. 10: 729-754.
- Waldenstedt L, Elwinger K, Hooshmand-Rad P, Thebo P Uggla A (1998). Comparison between effects of standard feed and whole wheat supplemented diet on experimental *Eimeria tenella* and *Eimeria maxima* infections in broiler chickens. *Acta. Veterinary Scandinavica*, 39: 461-71.
- Waldenstedt L, Elwinger K, Lunden A, Thebo P, Bedford MR, Uggla A (2000). Intestinal digesta viscosity decreases during coccidial infection in broilers. *British Poultry Science*, 41: 459-464.
- Waldenstedt L, Elwinger K, Thebo P, Uggla A (1999). Effect of betaine supplement on broilers performance during an experimental coccidial infection. *Poultry Science*. 78: 182-189.
- Wang Y, Mcallister TA, Newbold CJ, Rode LM, Cheeke PR, Cheng KJ (1998). Effects of *Yucca schidigera* extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). *Animal Feed Science and Technology*, 74: 143-153.
- Wang ZR, Qiao SY, Lu WQ, Li DF (2005). Effects of enzyme supplementation on performance, nutrient digestibility,

gastrointestinal morphology, and volatile acid profiles in the hindgut of broilers fed wheat-based diets. *Poultry Science*. 84: 875-881.

- Williams RB (2008). Sustainable coccidiosis control in poultry production: The role of live vaccines. *International Journal of Parasitology*. 32: 617-629.
- Williams RB (2002). Anticoccidial vaccines for broiler chickens: Pathway to success. *Avian Pathology*. 31: 317-353.
- Yim D, Kang SS, Kim DW, Kim SH, Lillehoj HS, Min W (2011). Protective effects of Aloe vera-based diets in *Eimeria maxima*infected broiler chickens. *Experimental Parasitology*, 127: 322-325.
- Zhai Z, Yi L, Wu L, Senchina DS, Wurtele ES, Murphy PA, Kohut ML, Cunnike JE (2007). Enhancement of innate and adaptive immune functions by multiple *Echinacea species. Journal of Medicinal Food*, 10: 423-434.