
Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Identifying Recovery Patterns from Resource Usage Data of Cluster Systems

IDENTIFYING RECOVERY PATTERNS FROM RESOURCE USAGE
DATA OF CLUSTER SYSTEMS

Nentawe Gurumdimma 1, Gideon Dadik Bibu2, Desmond Bala Bisandu3, Mammuan Titus Alams4

1,2,3,4Department of Computer Science, University of Jos, Nigeria

Authors Email Addresses: yusufn@unijos.edu.ng, dadikg@unijos.edu.ng, bisandud@unijos.edu.ng, alamsm@unijos.edu.ng

ABSTRACT
Failure of Cluster Systems has proven to be of adverse effect and
it can be costly. System administrators have employed divide and
conquer approach to diagnosing the root-cause of such failure in
order to take corrective or preventive measures. Most times,
event logs are the source of the information about the failures.
Events that characterized failures are then noted and categorized
as causes of failure. However, not all the ’causative’ events lead
to eventual failure, as some faults sequence experience recovery.
Such sequences or patterns constitute challenge to system
administrators and failure prediction tools as they add to false
positives. Their presence are always predicted as “failure
causing“, while in reality, they will not. In order to detect such
recovery patterns of events from failure patterns, we proposed a
novel approach that utilizes resource usage data of cluster
systems to identify recovery and failure sequences. We further
propose an online detection approach to the same problem. We
experiment our approach on data from Ranger Supercomputer
System and the results are positive.

Keywords: Change point detection; resource usage data;
recovery sequence; detection; large-scale HPC systems

INTRODUCTION
In cluster systems, faults observed may not always lead to a
system failure. However, whenever it does, such failure is costly,
due to system downtime. In order t to have a glimpse at the cause
these failures, system administrators most times rely on the logs
produced by these systems. Also, these logs are useful in
inferring the root causes of such failures and for taking corrective
or preventive measures. In Oliner and Aiken, (2011), the authors
pointed out that in reality, there exists no description of a correct
system. This is true as so many components are involved and
system administrators are probably unaware of some happenings
within the system, sometimes, until a problem is noticed. Root
cause analysis has been employed to trace causes of such
failures, most times from the logs. Work by Gainaru et al., (2011;
2012) characterized some of these faults based on frequency of
occurrence using signal processing. They came up with a good
way of identifying patterns of these faults from error
messages/logs where they are either classified as silent, noisy or
periodic signals. The characterization gives an insight to how
some failures behave. The presence of certain error message
types characterizes some particular failures. That is, their
presence is an indication of imminent failure. Some of these
errors result in spurious logging of messages. For example, a
network failure could result in spurious logging of “communication
failed” events. Some failures may behave differently in terms of
the symptomatic messages logged. Another example is memory

problem; it can be characterized by chatty error messages. The
anticipated failure as a result of these faults and errors may
eventually not occur. This happens for network fault if a recovery
is completed Chuah et al., (2010; 2011), likewise memory errors
which may be corrected by error correcting code (ECC), even
though, from the event logs, there is every indication that these
faults will result in failure (Makanju et al., 2010a); Gainaru et al.,
2012) Most times, it is very difficult for system administrators to
know if such faults would eventually lead to the failure or not.
Previous work Gurumdimma et al., (2015) on detecting faults
using logs has shown that this problem increases detection false
positives.

In this work, we want to identify those sequences which, from its
patterns of events are indicative of failure, but, however, do not
end up causing any failure. This work is similar to the work in
Gurumdimma and Jhumka, (2017), however, in this, we further
propose an online method of identifying these recovery patterns.
We refer to these patterns as recovery sequences while those
that end in failure as failure sequences. Event logs or error
messages do not provide sufficient insight to deduce if such
sequences end up in failure or not. Additional information may be
required. We propose a novel approach based on change point
detection that detects such sequences using resource usage
data. Our detection approach demonstrates that re-source
usage/utilization data can be useful in identifying recovery
sequences with fmeasure of 64% when applied on resource
usage data of Ranger Supercomputer System.

The contributions of this paper are as follows: (1) We propose a
new way of utilizing Resource usage/utilization data to identify
recovery sequences among other failure sequences. (2) We
propose a new method that employs change point detection
(CPD) to detect points of anomalous resource usage within the
sequence to detect recovery sequence and highlights the
effectiveness and the limitations of this method. (3) We proposed
an online approach to detecting recovery patterns.

The rest of the paper is organized as follows: .We give an
overview of related work from this field in Section II, Section III
present an overview of the Ranger supercomputer and the
resource usage data used. Section IV presents the methodology
employed, discusses how we transform our data then we explain
change point detection and the detection algorithm. We proceed
to explain how we performed our experiments, the metrics used
for evaluation and then discuss the results in Section V and
conclude in Section VI.

F
u

ll
L

en
g

th
 R

es
ea

rc
h

 A
rt

ic
le

87

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Identifying Recovery Patterns from Resource Usage Data of Cluster Systems

Related Work
Gainaru et al., (2012) effectively used signal processing method
to analyses systems behaviour, considering the events as signals.
They are able to characterize events and show that normal and
faulty behaviours are different for different event types. They,
however, dis-covered that some failure behaviour is similar to
those that are not, an example is memory errors which behaves
just as failure only that it is eventually corrected by ECC. They
used the event logs to perform this analysis. In our approach, we
focus more on the resource usage data since form the event logs,
normal and failure events can have similar behaviour. We employ
an unsupervised detection method to identify abnormal change in
the use of the resources in the system. Other works that use
signal processing approach includes (Giffin et al., 2002; Gao et
al., 2004; Mutz et al., 2006; Oliner et al., 2008; Oliner and Aiken,
2011). The work of Oliner and Aiken, (2011) established system
components that affect an unusual behaviour or anomaly in
system. The approach converted log entries into real-valued
functions of time called “anomaly signals”. This measurement
encodes deviation from the expected behaviour. The approach
provides an understanding to how component interaction can
point to and used for detecting system problems. Converting the
logs into anomaly signals requires an understanding of normal
system. This is one problem because it is difficult to obtain the
normal behaviour in most cases. Our approach is different as it
does not require converting the data into already known anomaly
signals using resource usage data.

Another method which combines both event logs and resource
usage data to detect causes of failure is presented in Chuah et
al., (2013) and Niyazi et al., (2017). The former combine both
event logs and usage logs to diagnose root-cause of some
intermittent faults. Applying statistical correlations, they found out
that events correlated to” soft lockup failures are indeed
responsible for those failures. The later model of the system
behavior is in such a way that the performance is monitored
online (Amanda, 2012). We use similar resource usage data;
however, we seek to see those sequences that, even though,
highly correlated with failures, will not end in failure. Our methods
can also be used for detecting faults in systems. In Gupta et al.,
(2017), a survey failure in HPC systems was done. The work
looked at different systems and performed failure analysis of
those systems. Their findings corroborated that of approaches
explained earlier.

Other approaches that leverage information content of logs to find
alerts in systems are (Oliner and Stearley, 2007; Oliner et al.,
2008; Makanju et al., 2010a; Makanju et al., 2010b). In
formativeness of logs are captured with the notion called
”Nodeinfo”. It obtains the informativeness of a node-hour by using
the log entropy weighing scheme for node term weights. Our
previous work Gurumdimma et al., (2015) on detection of failure
patterns relied only on the entropy and behaviour of nodes and
similar sequences to characterize a failure sequence. As
mentioned earlier, these approaches are reported to contain false
positives due the normal sequences that behave just as abnormal
ones (Wayne, 2000; Liang et al., 2006). We believe that resource
usage data will contain more accurate state of the system in
terms of how resources are used when the system is normal or
abnormal (Xu et al., 2009; Xiaoyu et al., 2012). Therefore, we
employ a detection method that relies on change point detection

and capture how these resources are used to detect recovery
sequences. In this work, we further proposed an online approach
to detecting the recovery patterns.

SYSTEM AND DATA
This section details the cluster system we focus on in our
research. We subsequently explain the data (resource usage
data), its structure and how it is obtained.

A. Ranger Supercomputer
A cluster system contains a set of nodes, jobs or tasks,
production time, job scheduler and sets of software components
(e.g. parallel file system). The job scheduler allocates jobs to
nodes to execute within a certain production time, and all the
components involved write messages to a writing container. This
is a common model for most of the cluster vendors like Ranger,
Cray, IBM etc. We explain the Ranger Supercomputer of Texas
Advance Computing Centre for our case study.

The Ranger supercomputer Hammond et al., (2010) is a cluster
consisting of 4,048 nodes of which 3,936 are compute nodes and
78 are Lustre File-system nodes. These nodes are connected via
a high-speed Infiniband network. Each node generates its own log
messages which are all sent to central logging system. Each node
of a Ranger supercomputer runs a Linux Operating System
kernel. Also, each node maintains its synchronization clock and
the Sun Grid Engine powers its job scheduling process and
resource management (Zhiling et al., 2010).
Ranger supercomputer runs a Lustre file storage system. Lustre
file-system is an object-based high performance network file
system that performs excellently for high throughput I/O tasks. It
is a widely utilized file system in the supercomputing world. The
file system is made up of:

i Meta -Data Server (MDS) that stores information like

permissions, file names, directories etc. The MDS equally
manages file requests from lustre clients.

ii Object Storage Server (OSS) which provides file I/O
services. It also treats network requests from lustre clients.

iii Lustre Clients: The lustre clients includes visualization
nodes, computational nodes, login nodes running the lustre
paving way for file system monitoring.

The Ranger supercomputer runs TACC stats Hammond, (2011),
I/O performance monitoring software. It monitors and records the
resource usage by jobs on each node. The software runs on each
node and the data collected on each of the nodes are logged
centrally and synchronized.

B. Resource Usage Data
Resource usage data are collected by TACC stats Hammond,
(2011) at Texas Advanced Computing Center (TACC). Basically,
it is a job-oriented and logically structured version of the
conventional Sysstat system performance monitor. TACC stats
record the hardware performance monitoring data, Lustre file-
system operation counts and InfiniBand device usage. The
resource usage data col-lector is executed on every node and is
mostly executed both at the beginning and end of a job via the
batch scheduler or periodically via cron (Oliner et al., 2010).

Each stats file is self-explanatory and it contains a multi-line

88

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Identifying Recovery Patterns from Resource Usage Data of Cluster Systems

header, a schema descriptor and one or more record groups.
Each stats file is identified by a header which contains the version
of TACC stats, the name of the host and its uptime in seconds. An
example of a stats file header is shown, for clarity:

$tacc_stats 1.0.2

$hostname i101-101.ranger.tacc.utexas.edu $uname Linux
x86_64 2.6.18-194.32.1.el5 _TACC #18 SMP

Mon Mar 14 22:24:19 CDT 2011 $uptime 4753669

A schema descriptor for Lustre network usage parameters is seen
below:

!lnet tx_msgs,E rx_msgs,E rx_msgs_dropped, E tx_bytes,E,U=B
rx_bytes E,U=B ... lnet - 90604803 95213763 1068
808972316287 4589346402748 ...

A schema descriptor has the character! Followed by the type, and
followed by a space separated list of elements or counters. Each
counter consists of a key name such as tx msgs which is followed
by a comma-separated list of options. These options include: (1)
E meaning that the counter is an event counter, (2) C signifying
that the value is a control register and not a counter, (3) W =< BIT
S > means that the counter is < BIT S > wide (32-bits or 64-bits),
and (4) U =< ST R > signifying that the value is in units specified
by < ST R > (e.g.: U=B where B stands for Bytes.). From the
schema descriptor above, lnet - 90604802 gives records of the
number of messages transmitted in the Lustre network.

TACC stats is open sourced and can be downloaded1 and
installed on Linux-based clusters. A list of the counters is shown
in Table I.

METHODOLOGY

A. Methodology Overview
Resource utilization data or usage data contains how much
resources are being used by a particular job on a
https://github.com/TACC/tacc stats

Table I: List of 96 Elements of Resource Usage Data

Type Element Quantity

 read bytes, write bytes, direct read,

 direct write, dirty pages hits,

Lustre

dirty pages misses, ioctl, open, close,

mmap, seek, fsync, setattr, truncate, 23
/work

flock, getattr, statfs,alloc node, setxattr,

 getxattr, listxattr, removexattr,

 inode permission

 read bytes, write bytes, direct read,

 direct write, dirty pages hits,

Lustre

dirty pages misses, ioctl, open, close,

mmap, seek, fsync, setattr, truncate, 23
/share

flock, getattr, statfs, alloc node, setxattr,

 getxattr, listxattr, removexattr,

 inode permission

 read bytes, write bytes, direct read,

 direct write, dirty pages hits,

Lustre

dirty pages misses, ioctl, open, close,

mmap, seek, fsync, setattr, truncate, 23
/scratch

flock, getattr, statfs, alloc node, setxattr,

 getxattr, listxattr, removexattr,

 inode permission

Lustre tx msgs, rx msgs, rx msgs

dr
op
pe
d,

6

/networ
k tx bytes, rx bytes, rx bytes

dro
pp
ed

 pgpgin, pgpgout, pswpin, pswpout,

 pgalloc normal, pgfree, pgactivate,

 pgdeactivate, pgfault,

Virtual

pgmajfault pgrefill normal,

pgsteal
normal, pgscan kswapd
normal, 21 memor

y

pgscan direct normal, pginodesteal,

 slabs scanned,kswapd steal,

 kswapd inodesteal,

 pageoutrun, allocstall pgrotated

particular node. This data could provide us with what is happening
within the system regarding how resources are being utilized
(Berrocal et al., 2014). For example, a high or low usage of
memory or network resources or a sudden change in page swap
rate could point to an abnormal behaviour which may lead to
failure. In essence, an abnormal use of resources is a pointer to
imminent failure (Xiang et al., 2011).

We conjecture that a system which experienced a successful
recovery from network error or memory error corrected by ECC
may behave differently in its resource usage. Even though error
messages may not provide a clear indication that failure will
eventually occur, resource usage data within such time could
provide a hint. Usage data within such time window could show
unusual use/utilization, however, may eventually be normal if it
does not end in failure due to successful recovery. Normal
behaviour towards time of expected failure could point to
successful recovery.

In this work, we detail steps taken to identify sequences with
successful recovery from error by detecting points of unusual or
abnormal change within the sequence of resource utilization data
for which failure is expected or has occurred. We utilized the idea
of change point detection (CPD) to perform this. But before then,
the data is first transformed to a format that can be used easily by
the algorithm.

B. Data Transformation
Resource Usage data as earlier explained contains how much
resources are used on a particular node as captured by different
resource counters (see Table I). Each counter captures the
amount of resources they are associated with. For example, a
network counter (rx mgs dropped) captures the amount of
messages dropped by a particular node.
Hence a line of logged usage data contains all the counters and
their usage values captured within certain period. Let us call these

89

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Identifying Recovery Patterns from Resource Usage Data of Cluster Systems

lines of logged usage data as events, ei. These events are
streams of time series data. For the purpose of our research, we
capture these events within given time window, tw, called
subsequence, xi. A sequence, S = x1, x2, …, xn, is then a stream
of subsequences as illustrated in Figure 1. It is worth noting here
that the choice of tw may be dependent on the time to failure of a
fault and component. A reasonable small time is chosen to avoid
capturing different usage patterns within a subsequence and also
big enough for such subsequence to be informative.

S= {e1, e2, e3, e4, …, en-2, en-1, en}

x1 x2 xn

Figure 1: Sequence of resource usage data

We extract each xi as a vector of the sum of resource usage for
each counter. For example, given subsequence x1, with counter tx
bytes: 267, read bytes: 302, etc, then the vector x1= [267 302 ...].
Hence, the amount of resources used on nodes ni in
subsequence xi are summed up for each counter. These values
are then scaled to values between 0 and 1, forming a probability
distribution. This is because in our change point detection
algorithm, it accepts the data as probability distribution and this
also becomes easier to handle and explained. We then construct
a matrix of the sequence where the subsequence forms row
vectors. Hence, given k number of counters and n subsequences,
the matrix M is as given in Figure 2.

Figure 2: Data matrix M with n subsequences of S, where xn;k is
the value of counter k in subsequence n.

From the matrix M, a vector representing S is formed by summing
the values of each counter in a subsequence divided by the
number of counters. That is, subsequence x1 = xi, 1 + xi, 2 + … + xi,

k divided by k (counter size). This is done for all the n
subsequences. Hence, the vector forms the input to the detection
algorithm.

C. Change Point Detection
The objective of anomaly detection is to find a data point that
behaves differently from others. The anomalousness now
depends on the field of application where among many other data
points, is a rare behaviour. Change Point Detection (CPD) (Liu et
al., 2013) and Amanda, (2012) is an anomaly detection method
where it detects ”drastic change” observed from a sequence
distribution. These points of drastic change are possible
anomalies. Two classes of CPD are commonly used depending
on the problem; they are: Real-time change-point detection (Liu et
al., 2013) and Retrospective change-point detection. The former

deal with detecting real-time changes in applications, a good
example is responses in robots. The later deals with applications
with longer response time and deals with retrospective data
(Lakhina et al., 2005).

In this work, we employ retrospective CPD to detect sudden
changes in the utilization of resources by a super-computer
system. Such sudden changes points to abnormal behaviour in
the system. For example, sudden peak in memory or network
resources usage could signal presence of faults and/or errors.

Why CPD approach? Resource usage data are collected and
logged as streams of time series data which is formed by the
probability distributions of the resources used on a node by
running jobs. Therefore, the level at which resources are utilized
may vary with time and this changes can be captured using CPD.
This is our motivation for using change point detection. We will
discuss briefly two Retrospective CPD approaches we employed
in our work.

1) Cumulative Sum Change-Point Detection: Cumulative
Sum (CuSUM) CPD approach Wayne, (2000) and Amanda,
(2012), is based on the fact that sudden change in parameter
corresponds to a change in the expected value of log-likelihood
ratio. From the name, it tracks the cumulative sums of the
differences between the values and the average. At points where
the values are above average, the cumulative sum steadily
increases. Therefore this method involves finding the mean and
its difference with observation values.

Given S = x1, x2, …, xn, (see Figure 1), we first initialize the
cumulative sum, cS0 = 0 and obtain the mean of S (the row
vectors), given as x,

cSi+1 = cSi + (xi+1 - x) (1)

for all i = 1… n.

Abrupt change points are those points with cSi values above
threshold th.

2) Divergence-Based Dissimilarity Measure: In this
approach, a dissimilarity measure is introduced. We used
Kullback Divergence (KLD) measure (Liu et al., 2013; Sandhan et
al., 2013, Bisandu et al., 2018).

The Kullback Divergence of two sequence distributions x and y
(for simplicity, we assume x = xi and y = xi+1) is given by:

where i is the index of probability values of vectors x and y.

Figure 3 shows the CPD charts of sequences that end in failure
and one that recover. Clearly form the chart, we noticed that low
values change points for the recovery sequences as time
progresses towards failure. This is low compared to failure
sequence. This gives us an idea of how these two sequences

90

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Identifying Recovery Patterns from Resource Usage Data of Cluster Systems

could behave based on how the resources are being used (during
failure, recovery). We utilized this for our detection algorithm
explained in the next section.

Figure 3: Graph showing detection performance (F-measure) of
both CPD methods used

D. Detection of Recovery Sequences
We detect multiple change points within a failure sequence. We
conjecture that sequences that eventually end in failure are likely
to contain change points and/or a sustain presence of such points
leading up to time of failure. Meanwhile, sequences that
eventually experience recovery may not contained many change
points or sustained change points leading up to expected time of
failure. These sequences may be characterized by relatively
normal resource utilization if there is a successful recovery from
faults. Given observations of usage data xi within a sequence S,
that is, S = x1; x2; :::; xn where observations, xi, are made within a
time window and time of occurrence of xi, tx1 < tx2 < … < txn .
Then, we conjecture that for any failure sequence s, as the time
tends towards time of failure, abnormal use of the resources can
be noticed throughout the sequence and it is likely to be sustained
across tx1 to txn. However, a recovery sequence will likely
experience normal behaviour or normal resource usage
eventually. This implies that it may likely contain less change
points as it approaches predicted failure time.

Algorithm 1: Sequence Detection

1: procedure DETECT(S; th)

2: cp = null . keeps the list of points above

 threshold

3: xi 2 S . vectors (subsequences) of S

4: for i = 1 to jSj 1 do

5: p(xi) =CPD(xi; xi+1)

6: if (p(xi) >= th then . th is change point

 threshold

7: add point (i) to list of change points (cp)

8: end if

9: end for

10: if (if there are more than a point i greater than
midpoint) then
11: return Failure

12: else

13: return Recovery
14: end if

15: end procedure

end

From Algorithm 1, we detect multiple change points within the
sequence. We keep the points which are seen as change points
for the sequence. The sequence with change points occurring
beyond the midpoint of the sequence will likely end in failure as
we earlier explained.

E. Online Detection of Recovery Sequences
Online approach to identifying recovery patterns

In this section, we propose an approach for an online detection of
recovery patterns. The advantages of having the online version
cannot be overemphasized. It saves system administrators from
having to activate failure recovery or mitigation processes.

The resource usage logs are periodically accessed as they are
logged for analysis. When a failure is predicted to occur, failure
recovery detection can be activated. In the algorithm, the
sequence of events is accessed within a given time; normal
approach for change point detection is applied on the first two
time windows accessed. Subsequent time subsequences are then
captured as they are logged and compared with previous ones. A
significant deviation from the previous ones signifies a change in
the pattern. However, we hypothesis that a failure pattern should
consistently show similar pattern, any deviation may indicate a
recovery. The approach is shown in Algorithm 2.

Algorithm 2: Online Detection

1: procedure DETECT

2: x1=Obtain first data with specified time window
3: x1 =transform(x1)

4: x2 =Subsequent data within given time window
5: x2 =transform(x2) . Convert to matrix
6: cp =CPD(x1; x2)
7: for i = 1 to n do

8: xi = Obtain next data
9: cpi =CPD(x2; xi)

10: Ri = jcpi cpj

11: if (Ri >) then
12: Suspicions + +

91

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Identifying Recovery Patterns from Resource Usage Data of Cluster Systems

13: end if

14: if Suspicious >= 1 then

15: return Recovery
16: else

17: return Failure
18: end if

19:

end

EXPERIMENTS AND RESULTS
The aim of this research is to develop a methodology to detect
sequences that recovered from faults and did not end in failure in
Ranger supercomputer system. To achieve this aim, we utilized
the resource usage data of Ranger not the error logs. Our
approach is then evaluated through experiments conducted on
the resource usage data of the Ranger Supercomputer from the
Texas Advanced Computing Center (TACC) at the University of
Texas at Austin2 (Lee et al., 2013).
As earlier explained in Section III, the resource usage data were
collected using TACC Stats Hammond et al., (2010) that takes
snapshots of utilization data of the 96 counters, this is done in
ten-minute interval . Jobs generate their resource usage data on a
particular node, which are then logged to the file system. The data
are logged by each node through a centralized message logging
system. The logs are combined and interleaved in time (Xu et al.,
2008).

We evaluate the approach on four weeks of resource us-age data
(32GB). These data were collected for the month of March 2012.
We extracted the 96 elements or counters from the resource
usage data as seen in Table I. From this data, we extracted
failure sequences that have been established by the experts.
From the data, more failure actually took place within the first and
second week of March 2012 with few occurring in the third and
fourth weeks. Among these failure sequences, are those that
eventually did not end up in failure, but experienced recovery.
Note that, the event/error logs was used by the experts to
determine failure sequences based on the root-case analysis they
did. We only extracted the corresponding resource usage data
within the same time established as failure sequences from the
error logs. We had a total of 660 sequences of which 182 are real
failure sequences and 72 recovery sequences, the remaining are
normal sequences.

A. Evaluation Metrics
We employ the widely used sensitivity, specificity and fmeasure
metric to evaluate the approach. Sensitivity, also called true
positive rate or recall measures the actual proportion of correctly
detected recovery sequences to the total number of sequences as
expressed in Equation 3. Specificity, or true negative rate,
measures the proportion of complete failure sequences which are
detected as recovery sequences among all faulty sequences as
seen in Equation 4. Fmeasure here is synonymous with the usual
fmeasure in information retrieval; however, in this case, it is the
harmonic mean of sensitivity and specificity (see Equation 5).

Since neither of sensitivity or specificity can be discussed in
isolation, fmeasure which combines the two providing us with
balanced detection accuracy is used.

B. Results
In the experiments, we evaluate our approach under various
detection threshold values. The values of detection threshold, th
is varied to obtain better value for both sensitivity and specificity.
We show results and discuss for the two CPD methods (CuSUM,
KLD) used.

From the results seen in Figure 4 for using CuSUM approach, the
true positive rate (sensitivity) performs low at th = 0.1; 0.2. It
consistently increased (reaching a maximum sensitivity of about
90%) as the value of th is increased. This shows that the more we
increase the value (th) for which we decide if a point is indeed a
change point or not, the better the detection of the recovery
sequences. It achieved a highest sensitivity at th = 0.7, which
remain constant for higher values of th. Likewise, the specificity is
highest at lower values of th as expected and reduces from 70%
to 20% at th = 0.6 and remains so for higher values. These results
demonstrate that we can achieve good detection of recovery
sequences when we use CuSUM change point detection method.
However, it is much better if we can achieve better results with
less false positives and false negatives. For this approach
(CuSUM), a better result (fmeasure) is obtained at threshold th =
0.3 as seen in Figure 6. It achieved about 63% detection.

Figure 4: Result showing accuracy of detecting recovery
sequences among failure sequences using Cumulative Sum
change point detection and varying values of detection threshold,
th.
Similarly, using KLD method (see Figure 5), the results are similar
to CuSUM. A highest sensitivity of about 84% is observed when

92

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Identifying Recovery Patterns from Resource Usage Data of Cluster Systems

th = 0.5 and more. The specificity on the other hand, decreases
with increase in th. The lowest specificity (10%) is obtained from
th = 0.6 and remained so for higher values. Comparatively,
CuSUM seems to slightly perform better over all the thresholds
used. However, looking at the fmeasure in Figure 6, KLD
performed high with detection of 64% at th = 0.2. This result is
almost similar with the CuSUM approach (1% difference), the only
difference is that they are achieved at different detection
thresholds.

Figure 5: Results showing accuracy of detecting recovery
sequences among failure sequences using KLD change point
detection, and varying values of detection threshold, th.

Figure 6: Result showing fmeasure of detecting recovery
sequences among failure sequences at varying values of
detection threshold, th.

Based on these results, it is very possible to achieve a good
detection of faulty sequences which did not end in failure
(recovery sequences) from usage data. Even though, this is not
the best performance expected, however, it is a good starting
point for exploring the use of resource utilization data of cluster
systems to detection both failure sequences and recovery
sequences applying change point the online approach, the data is
collected within some time window as the system logs them.
These failure patterns are identified on the fly as data about the
usage of resources are collected. Hence the result of the offline
version can be similar with the online version. An issue we
envisage is that the time of execution of the algorithms might
differ.

Conclusion

We proposed an approach for recovery sequence detection in
large-scale distributed systems. The approach makes use of
resource usage data to detect the recovery sequence among
other failure sequences. The method leverages the fact that
unusual use of resources by the systems could point to impending
failure, to detect recovery patterns. Change point detection is
employed to determine the points of anomaly within a sequence.
These points of anomalous behaviour points to a recovery or
failure sequence. We proposed a detection algorithm based on
these parameters to determine if a faulty will eventually recover or
end in failure. We further proposed an online version of the
approach. We evaluated our methodology on the resource usage
data from the Ranger supercomputer and the results has shown
to detect recovery sequences with good accuracy. It achieved an
fmeasure of 64%.
As a future work, we intend to investigate the performance of this
methodology on data from different cluster systems.

Acknowledgments
We thank the Texas Advanced Computing Center (TACC) for
providing the Ranger message logs.

REFERENCES
Amanda, S., 2012. A review of anomaly detection with focus on

changepoint detection (Master’s Thesis). Department of
Mathematics , Swiss Federal Institute of Technology Zurich.

Berrocal, E., Li, Y., Wallace, S., Papka, M.E., Zhiling, L., 2014.
Exploring void search for fault detection on extreme scale
systems, in: Cluster Computing (CLUSTER), 2014 IEEE
International Conference On. pp. 1–9.
https://doi.org/10.1109/CLUSTER.2014.6968757

Bisandu, D.B., Prasad, R. and Liman, M.M. 2018. Clustering
news articles using efficient similarity measure and N-
grams, Int. J. Knowledge Engineering and Data
Mining,Vol. 5, No. 4, pp.333–348.

Chuah, E., Arshad, J., Sai, N., HammonD, J., Browne, J.C., Barth,
B., 2013. Linking Resource Usage Anomalies with System
Failures from Cluster Log Data, in: Reliable Distributed
Systems (SRDS), 2013 IEEE 32nd International Symposium
On. pp. 111–120. https://doi.org/10.1109/SRDS.2013.20

Chuah, E., Lee, G., Tjhi, W., Kuo, S., Hung, T., Hammond, J.,
Minyard, T., Browne, J.C., 2011. Establishing Hypothesis for
Recurrent System Failures from Cluster Log Files, in:
Proceedings of the 2011 IEEE Ninth International
Conference on Dependable, Autonomic and Secure
Computing, DASC ’11. IEEE Computer Society,
Washington, DC, USA, pp. 15–22.

Chuah, E., Shyh-hao, K., Hiew, P., Tjhi, W.C., Lee, G.,
Hammond, J., Michalewicz, M.T., Hung, T., Browne, J.C.,
2010. Diagnosing the root-causes of failures from cluster log
files, in: 2010 International Conference High Performance
Computing (HiPC). pp. 1–10.

Gainaru, A., Cappello, F., Snir, M., Kramer, W., 2012. Fault
Prediction Under the Microscope: A Closer Look into HPC
Systems, in: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and
Analysis, SC ’12. IEEE Computer Society Press, Salt Lake
City, Utah, pp. 77:1–77:11.

Gainaru, A., Cappello, F., Trausan-Matu, S., B. Kramer, 2011.
Event Log Mining Tool for Large Scale HPC Systems, in:
Proceedings of the 17th International Conference on Parallel

93

http://www.scienceworldjournal.org/

Science World Journal Vol 13(No 4) 2018
www.scienceworldjournal.org
ISSN 1597-6343
Published by Faculty of Science, Kaduna State University

Identifying Recovery Patterns from Resource Usage Data of Cluster Systems

Processing - Volume Part I, Euro-Par’11. Springer-Verlag,
Bordeaux, France, pp. 52–64.

Gao, D., Reiter, K.M., Song, D., 2004. Gray-box Extraction of
Execution Graphs for Anomaly Detection, in: Proceedings of
the 11th ACM Conference on Computer and
Communications Security, CCS ’04. ACM, Washington DC,
USA, pp. 318–329.
https://doi.org/10.1145/1030083.1030126

Giffin, T.J., Jha, S., Miller, P.B., 2002. Detecting Manipulated
Remote Call Streams, in: Proceedings of the 11th USENIX
Security Symposium. USENIX Association, Berkeley, CA,
USA, pp. 61–79.

Gupta, S., Patel, T., Engelmann, C., Tiwari, D., 2017. Failures in
Large Scale Systems: Long-term Measurement, Analysis,
and Implications, in: Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’17. ACM, New York, NY, USA,
pp. 44:1–44:12. https://doi.org/10.1145/3126908.3126937

Gurumdimma, N., Jhumka, A., 2017. Detection of Recovery
Patterns in Cluster Systems Using Resource Usage Data,
in: 2017 IEEE 22nd Pacific Rim International Symposium on
Dependable Computing (PRDC). pp. 58–67.
https://doi.org/10.1109/PRDC.2017.17

Gurumdimma, N., Jhumka, A., Liakata, M., Chuah, E., Brwone, J.,
2015. Towards Detecting Patterns in Failure Logs of Large-
Scale Distributed Systems, in: Parallel & Distributed
Processing Symposium Workshops (IPDPSW), IEEE
International. IEEE.

Hammond, J., 2011. Tacc_stats: I/o performance monitoring for
the intransigent, in: In Invited Keynote for the 3rd IASDS
Workshop.

Hammond, L.J., Minyard, T., Browne, J., 2010. End-to-end
framework for fault management for open source clusters:
Ranger, in: Proceedings of the 2010 TeraGrid Conference,
TG ’10. ACM, Pittsburgh, Pennsylvania, pp. 9:1–9:6.

Lakhina, A., Crovella, M., Diot, C., 2005. Mining Anomalies Using
Traffic Feature Distributions. SIGCOMM Comput. Commun.
Rev. 35, 217–228. https://doi.org/10.1145/1090191.1080118

Lee, Y., Yeh, Y., Wang, F.Y., 2013. Anomaly Detection via Online
Oversampling Principal Component Analysis. Knowl. Data
Eng. IEEE Trans. On 25, 1460–1470.
https://doi.org/10.1109/TKDE.2012.99

Liang, Y., Zhang, Y., Jette, M., Anand, S., Sahoo, R., 2006.
BlueGene/L Failure Analysis and Prediction Models, in:
Dependable Systems and Networks, 2006. DSN 2006.
International Conference On. pp. 425–434.
https://doi.org/10.1109/DSN.2006.18

Liu, S., Yamada, M., Collier, N., Sugiyama, M., 2013. Change-
point Detection in Time-series Data by Relative Density-ratio
Estimation. Neural Netw 43, 72–83.
https://doi.org/10.1016/j.neunet.2013.01.012

Makanju, A., Adetokunbo, A.O., Zincir-Heywood, N.A., Milios,
E.E., 2010a. An Evaluation of Entropy Based Approaches to
Alert Detection in High Performance Cluster Logs, in:
Proceedings of the 7th International Conference on
Quantitative Evaluation of SysTems(QEST). IEEE,
Williamsburg, USA.

Makanju, A., Adetokunbo, A.O., Zincir-Heywood, N.A., Milios,
E.E., 2010b. Fast Entropy Based Alert Detection in
Supercomputer Logs, in: PFARM ’10: Proceedings of the
2nd DSN Workshop on Proactive Failure Avoidance,

Recovery and Maintenance (PFARM). IEEE, Chicago, USA.
Mutz, D., Valeur, F., Vigna, G., C. Kruegel, 2006. Anomalous

System Call Detection. ACM Trans Inf Syst Secur 9, 61–93.
https://doi.org/10.1145/1127345.1127348

Niyazi, S., Varun, C., Abani, P.K., 2017. Tracking System
Behavior from Resource Usage Data, in: 2017 IEEE
International Conference on Cluster Computing, CLUSTER
2017, Honolulu, HI, USA, September 5-8, 2017. pp. 410–
418. https://doi.org/10.1109/CLUSTER.2017.70

Oliner, A., Stearley, J., 2007. What Supercomputers Say: A Study
of Five System Logs, in: International Conference on
Dependable Systems and Networks, 2007. DSN ’07. 37th
Annual IEEE/IFIP. pp. 575–584.

Oliner, A.J., Aiken, A., 2011. Online detection of multi-component
interactions in production systems, in: Dependable Systems
Networks (DSN), 2011 IEEE/IFIP 41st International
Conference On. pp. 49–60.
https://doi.org/10.1109/DSN.2011.5958206

Oliner, J.A., Aiken, A., Stearley, J., 2008. Alert detection in
system logs, in: Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference On. IEEE, pp. 959–964.

Oliner, J.A., Kulkarni, V.A., Aiken, A., 2010. Using correlated
surprise to infer shared influence, in: Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International
Conference On. pp. 191–200.
https://doi.org/10.1109/DSN.2010.5544921

Sandhan, T., Srivastava, T., Sethi, A., Jin, C.Y., 2013.
Unsupervised learning approach for abnormal event
detection in surveillance video by revealing infrequent
patterns, in: Image and Vision Computing New Zealand
(IVCNZ), 2013 28th International Conference Of. pp. 494–
499. https://doi.org/10.1109/IVCNZ.2013.6727064

Wayne, T.A., 2000. Change-Point Analysis: A Powerful New Tool
For Detecting Changes.

Xiang, R., Huaimin, W., Dianxi, S., Zhenbang, C., Hua, C., Qi, Z.,
Tingtao, S., 2011. Identifying faults in large-scale distributed
systems by filtering noisy error logs, in: Dependable
Systems and Networks Workshops (DSN-W), 2011
IEEE/IFIP 41st International Conference On. pp. 140–145.
https://doi.org/10.1109/DSNW.2011.5958800

Xiaoyu, F., Rui, R., Jianfeng, Z., Wei, Z., Zhen, J., Gang, L., 2012.
LogMaster: Mining Event Correlations in Logs of Large-
Scale Cluster Systems, in: Reliable Distributed Systems
(SRDS), 2012 IEEE 31st Symposium On. pp. 71–80.
https://doi.org/10.1109/SRDS.2012.40

Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, I.M., 2009.
Detecting large-scale system problems by mining console
logs, in: Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP ’09. ACM, Big Sky,
Montana, USA, pp. 117–132.

Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M., 2008.
Mining console logs for large-scale system problem
detection, in: Workshop on Tackling Computer Problems
with Machine Learning Techniques (SysML), San Diego,
CA.

Zhiling, L., Ziming, Z., Yawei, L., 2010. Toward Automated
Anomaly Identification in Large-Scale Systems. Parallel
Distrib. Syst. IEEE Trans. On 21, 174–187.

94

http://www.scienceworldjournal.org/

