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Abstract: In this paper, a block method was constructed for the direct solution of general second order initial 

value problems of the Volterra type integro-differential equations. The method was investigated for the basic 

properties and was found to be zero stable, consistent and convergent. The region of absolute stability showed 

that the method is A-stable. The method was tested on some existing standard problems, the results revealed that 

Trapezoidal rule performed significantly better than Simpson’s 1/3 and Gaussian quadrature rules as revealed 

by the absolute error values shown in Tables 2 and 4 signifying that the choice of quadrature rule play an 

important role in the determination of the solution for VIDEs.  

Keywords: Volterra, integro-differential equations, Continuous, Block method, Collocation, Interpolation, 

second order equations, Hermite, polynomials, Trapezoidal rule, Simpson’s 1/3 rule, Gaussian’s quadrature 

rule. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 20-07-2017                                                                           Date of acceptance: 27-10-2017 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Volterra integro-differential equations has a wide spread of applications, they are applied in many 

physical areas such as in the glass forming process, population dynamics, economics and in chemical 

engineering. Unfortunately many problems involving these types of equations are very difficult if not impossible 

to solve analytically. However, the numerical solutions of such equations have been extensively studied by 

many researchers. Feldstein and Sopka (1974) introduced numerical methods for nonlinear Volterra integro-

differential equations. The implicit Runge-Kutta methods of optimal order for Volterra integro-differential 

equations were suggested by Brunner (1984). The mixed interpolation and collocation methods for first and 

second order Volterra integro-differential equations with periodic solution were introduced in Brunner (1996). 

Yalcinbas and Sezer (2000) considered the approximate solution of high order linear Volterra-Fredholm integro-

differential equations in terms of Taylor polynomials.  The quadrature rules to find the numerical solutions of 

the initial value problems to Volterra integro-differential equations of the second kind appeared in Al-Timeme 

(2003). Linear multistep method for Volterra integro-differential equations was constructed by Day (1967) and 

Linz (1969). 
In this paper, we introduce a different approach which is based on the continuous linear multistep 

method using the Hermite polynomials as basis function and three quadrature rules each is used in evaluating 

the integral part of the VIDEs. 

 

II. Derivation of the Method  
The methods of solution for second order initial value problems for ordinary differential equation of the form 

 

                                                                                                                      (1.0) 

 

As discussed by many researchers such as in Lanczos (1956), Brunner (1996), Fox and Parker (1968), Lie and 

Norsett (1989), Onumanyiet al. (1994, 1999), Onumanyi and Yusuph (2002), Sirisena et al. (2004), Lambert 

(1973), Gear (1971), Okunuga and Sofoluwe (1990), Areo et al. (2008) and Okunuga and Ehigie (2009) can be 

modified to solve systems of equations arising from the discretization of second order initial value problems of 

the Volterra type of the form 
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                                                                                                                 (1.1) 

 

where 

                                                                                                           

 

 

 

and  𝑦(𝑥) is the unknown function. The idea is to approximate the exact solution 𝑦(𝑥) of (1.1) in the partition 

                                                                    of the integration interval [𝑎, 𝑏] with a constant step size  ℎ by the 

Hermite polynomial of the form 

 

 

                                                                                                                 (1.2)      

 

where 𝑐𝑖 ∈ ℝ, 𝑦𝜖𝐶2(𝑎, 𝑏) and 𝑡 = (𝑥 − 𝑥𝑛). 

The second derivative of (1.2) is substituted into (1.1) to obtain a differential system of the form 

 

                                                                                                                  (1.3)    

 

Interpolating (1.2) at 𝑥𝑛+𝑟 , 𝑟 = 0 and 𝑘 − 1 and collocating (1.3) at 𝑥𝑛+𝑟 , 𝑟 = 0,1, … , 𝑘, we obtain the 

continuous scheme of the form 

 

          (1.4) 

 

where    

                    

                                                                                                                  (1.5)      

 

the weights 𝑤𝑛𝑗  depends on the choice of the quadrature rule. In this paper, three quadrature rules shall be used 

to evaluate the integral part, namely, Trapezoidal, Simpson’s 1/3 and Gaussian quadrature. Evaluating (1.4) at 

some desired grid points; we obtain the corresponding discrete schemes.  

Considering a three step method, that is letting 𝑘 = 3  in (1.2), we get  

 

 

 

 

Collocating (1.3) at 𝑥𝑛+𝑟 , 𝑟 = 0,1,2,3 and interpolating (1.2) at  𝑥𝑛  and  𝑥𝑛+2, we arrived at the continuous linear 

multistep method of the form 

 

 

                                                                                                                 (1.6)         

where 

 

 

 

 



On One Investigating Some Quadrature Rules For The Solution Of Second Order Volterra Integro-.. 

DOI: 10.9790/5728-1305034550                               www.iosrjournals.org                                              47 | Page 

Evaluating (1.6) with coefficients (1.7) at 𝑥𝑛+1, 𝑥𝑛+3 and its first derivative evaluated at the points  𝑥𝑛 ,  𝑥𝑛+1, 

𝑥𝑛+2  and  𝑥𝑛+3, we arrive at the discrete block method:  
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The modified block formulae is obtained from (1.8) as 
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III. Analysis of the Method  

Order and error constant  
Expanding the block (1.8) in Taylor’s series and collecting like terms in powers of  ℎ, we obtain; 

𝐶 0 = 𝐶 1 = ⋯ = 𝐶 5 =  0,0,0,0,0,0 𝑇   and  𝐶 6 =  −
7

480
, −

1

30
, −

9

160
, −

19

720
, −

1

90
, −

3

80
 
𝑇

. 

Hence the block method has order 𝑝 = (4,4,4,4,4,4)𝑇  and error constant 

𝐶 6 =  −
7

480
, −

1

30
, −

9

160
, −

19

720
, −

1

90
, −

3

80
 
𝑇

. 

 

Consistency 
According to Lambert (1991) and Fatunla (1988), the block method (1.8) is consistent since  𝑝 = 4 > 1 

Zero stability 
The block solution (1.9) is said to be zero stable if the roots 𝑧𝑟 ;  𝑟 = 1, … , 𝑛 of the first characteristic 

polynomial  𝜌 (𝑧), defined by 

𝜌 (𝑧) = 𝑑𝑒𝑡 𝑧𝑄 − 𝑇  
satisfies   𝑧𝑟  ≤ 1and every root with  𝑧𝑟  = 1 has multiplicity not exceeding two in the limit as ℎ → 0. From 

the block solution (1.9), we have 

𝑧6 − 𝑧4 = 0 and 𝑧 =  0,0,0,0, −1,1 . 
Hence the method is zero stable, since all roots with modulus one do not have multiplicity exceeding the order 

of the differential equation in the limit as  ℎ → 0. 
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Convergence 
According to Lambert (1991) and Fatunla (1988), the block method (1.8) is convergent since it is consistent and 

zero stable 

 

IV. Region of absolute stability 
Reformulating the block method (1.8) as a General Linear Multistep Method (GLM) containing a partition of 

matrices A, B, C and DI where 

A =

 

 B =

 

C =

 

 DI =

. 

Substituting these matrices into the stability polynomial   we obtain the stability 

matrix whose determinant and the first derivative of the determinant are respectively given as 

 

  and   

 

These are then plotted using MATLAB code based on Newton’s iteration method to obtain the region of 

absolute stability as 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The region of absolute stability of method (1.8)  
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V. Numerical Examples 
We implement our derived block method on second order initial value problems of the Volterra type integro-

differential equations to support our theoretical discussion of the proposed method. The proposed method is 

tested on some numerical examples contained in the literature using MAPLE 18 programme. 

 

Examples  
(a) Consider a second order linear Volterra integro differential equation taken from Al-Smadi et al. (2013) 

𝑦′′  𝑥 −  𝑒−𝑠sin(𝑥)𝑦′ 𝑠 𝑑𝑠
𝑥

0

+ 𝑦 𝑥 =  
1

2
𝑒−𝑥sin(𝑥) − sin(𝑥) , 0 ≤ 𝑥 ≤ 1 

𝑦(0) = −1, 𝑦′ 0 = 1. 
The exact solution is  𝑦 𝑥 = sin(𝑥) − cos(𝑥). The errors for 𝑛 = 100 at some selected mesh points are 

displayed in Tables 1and 2 

(b)  Consider a second order nonlinear Volterra integro differential equation taken from Al- Smadi et al. 

(2013) 

𝑦′′ 𝑥 +  (𝑦 𝑠 )2𝑑𝑠
𝑥

0

+  
𝑥

2
− sinh(𝑥) −

1

4
sinh(2𝑥) = 0,   0 ≤ 𝑥 ≤ 1 

𝑦(0) = 0, 𝑦 ′ 0 = 1 

The exact solution is  𝑦 𝑥 = sinh(𝑥). The errors for 𝑛 = 50  at some selected mesh points are displayed in 

Tables 3 and 4 

 

 

 

 

 

 

 

Table 1: Numerical Results of Example (𝒂) for 𝒏 = 𝟏𝟎𝟎 Using the Three Quadrature Rules 

x Exact solution AL-Smadi et al., 

(2013) 

Proposed method 
by Trapezoidal rule 

Proposed method 
by Gaussian rule 

Proposed method 
by Simpson’s 1/3 rule 

0.16 

0.32 

0.48 
0.64 

0.80 

0.96 

- 0.8279090768 

- 0.6346688575 

- 0.4252157473 
- 0.2049003165 

0.0206493816 

0.2456715822 

    - 0.8279086005 

    - 0.6346681575 

    - 0.4252150356 
    - 0.2049975120 

    0.0206497070 

    0.2456716440 

- 0.8279090779 

- 0.6346688694 

- 0.4252158013 
- 0.2049004678 

  0.0206490561 

  0.2456709902 

   - 0.8278965649 

   - 0.6343396681 

   - 0.4231297407 
   - 0.1971913811 

0.0418185868 

0.2937648271 

- 0.8279124903 

- 0.6346953134 

- 0.4253011813 
- 0.2050927333 

  0.0202969851 

  0.2451064621 

Table 2: The Absolute Error Values Example (𝒂) for 𝒏 = 𝟏𝟎𝟎 Using the Three Quadrature Rules 

AL-Smadi et al., (2013) 

Absolute error 

Trapezoidal rule Absolute error Gaussian rule               

Absolute error 
Simpson’s 1/3 rule 

Absolute error 
4.7628600 x10-7 

7.0000300 x10-7 
7.1159900 x10-7 

5.6533500 x10-7 

3.2537700 x10-7 
6.1419500 x10-8 

1.9000000 x10-9 

1.3900000 x10-8 
5.6600000 x10-8 
1.5330000 x10-7 
3.2662000 x10-7 
5.9210000 x10-7 

1.2511900 x10-5 

3.2918940 x10-4 
2.0860066 x10-3 

7.7089354 x10-3 

2.1169205 x10-2 

4.8093244 x10-2 

3.4135000 x10-6 

2.6455900 x10-5 
8.5434000 x10-5 

1.9241680 x10-4 

3.5239653 x10-4 
5.6512010 x10-4 

Table 3: Numerical Results of Example (𝒃) for 𝒏 = 𝟓𝟎 Using the Three Quadrature Rules 

X Exact solution AL-Smadi et al., 

(2013) 

Proposed method 
by Trapezoidal rule 

Proposed method 
by Gaussian rule 

Proposed method 
by Simpson’s 1/3 rule 

0.16 

0.32 

0.48 

0.64 

0.80 

0.96 

0.1606835410 

0.3254893636 

0.4986455052 

0.6845942276 

0.8881059822 

1.1144017940 

0.1606828700 

0.3254880336 

0.4986436927 

0.6845922814 

0.8881044338 

1.1144013728 

0.1606834953 

0.3254889922 

0.4986442194 

0.6845910722 

0.8880995443 

1.1143900770 

0.1606820972 

0.3254593282 

0.4984168617 

0.6835871768 

0.8848541304 

1.1057473440 

0.1607702018 

0.3256425884 

0.4984167169 

0.6840816703 

0.8876640323 

     1.1146683800 

Table 4: The Absolute Error Values of Example (𝒃) for 𝒏 = 𝟓𝟎 Using the Three Quadrature Rules 

AL-Smadi et al., (2013) Absolute error Trapezoidal rule Absolute 

error 
Gaussian rule               

Absolute error 
Simpson’s 1/3 rule 

Absolute error 
6.70931 x10-7 

1.33004 x10-6 
1.81246 x10-6 

1.92460 x10-6 

1.54832 x10-6 
4.20849 x10-7 

4.5700 x10-8 

3.7140 x10-7 
1.2858 x10-6 

3.1554 x10-6 

6.4379 x10-6 
1.1717 x10-5 

1.443800 x10-6 

3.003540 x10-5 
2.286435 x10-4 

1.007051 x10-3 

3.251852 x10-3 
8.654450 x10-3 

8.6660800 x10-5 

1.5322480 x10-4 
2.2878830 x10-4 

5.1255730 x10-4 

4.4194990 x10-4 
2.6658800 x10-4 
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VI. Conclusion 
In this paper, some information about solving Volterra intgro-differential equations is provided. We 

have presented and illustrated the collocation approximation method using the Hermite polynomial as basis 

function to investigate solving an initial value problem in the class of Volterra integro-differential equations 

which are very difficult if not impossible to solve analytically. With the block approach, the non self starting 

nature associated with the predictor corrector method has been eliminated. Unlike the approach in predictor 

corrector method where additional equations were supplied from different formulation, all our additional 

equations are from the same continuous formulation. However, the absolute stability region showed that the 

method is A-stable and the application of this method to practical problems revealed that the method compared 

favorably using Trapezoidal quadrature rule with existing standard problems than Gaussian and Simpson’s 1/3 

quadrature rules. This investigation further revealed that the choice of quadrature rule plays a vital role in 

solving Volterra intgro-differential equations (VIDEs). 
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