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ABSTRACT: We consider a family of four, five and six-step block methods for the numerical integration of
ordinary differential equations of the type ¥" = flx.v. ¥'). The main methods and their additional equations
are obtained from the same continuous formulation via interpolation and collocation procedures. The methods
which are all implicit are of uniform order and are assembled into a single block equations. These equations
which are self starting are simultaneously applied to provide for ¥; . ¥, ... 3 at once without recourse to any
Predictors for the Ordinary differential equations. The order of accuracy, convergence analysis and absolute
stability regions of the block methods are also presented.

KEYWORDS: Second Order ODE, Continuous formulation, Collocation and Interpolation, Second Order
Equations, Block Method.

l. INTRODUCTION
The study of second order differential equations of the form:

y'=floy v,y 0 = y'(0) = 8 @)

where f is a continuous function, has a huge bibliography covering several applicative fields, from chemistry to

physics and engineering. Even if any high order ODE may be recast as a first order one, this transformation
increases the size of the original problem and should make its numerical solution more complicated since it
requires the computation of both solution and derivatives (which have different slopes) at the same time.

Considerable attention has been devoted to the development of various methods for solving (1) directly
without first reducing it to a system of first order differential equations. For instance, Twizell and Khaliq [1],
Yusuph and Onumanyi [2], Simos [3], Fatunla [4, 5], Henrici [6], and Lambert [7, 8, 9]. Hairer and Wanner [10]
proposed Nystrom type methods and stated order conditions for determining the parameters of the methods.
Other methods of the Runge-Kutta type are due to Chawla and Sharma [11]. Methods of the LMM type have
been considered by Vigo-Aguiar and Ramos [12, 13] and Awoyemi [14, 15]. In [12], variable stepsize multistep
schemes based on the Falkner method were developed and directly applied to (1) in a predictor corrector (PC)
mode. In [14, 15] the LMMs were proposed and also implemented in a predictor — corrector mode using the
Taylor series algorithm to supply the starting values. Although, the implementation of the methods in a PC
mode yielded good accuracy, the procedure is more costly to implement. PC subroutines are very complicated to
write for supplying the starting values which lead to longer computer time and more human effort. Our method
is cheaper to implement, since it is self-starting and therefore does not share these drawbacks.

In this paper, we develop a family of uniform orders 3, 4 and 5 methods which are applied each as a
block to yield approximate solutions ¥; . ¥s. ... ¥;. We also show that the block methods derived are zero-stable

and consistent, hence they methods are convergent.
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Il. THE DERIVATION OF THE METHOD
In this section, we use the interpolation and collocation procedures to characterize the LMM that is of
interest to us by choosing the right number of interpolation points () and the right number of collocation points

(5). The process leads to a system of equations involving (» + =) unknown coefficients, which are determined by

the matrix inversion approach. The formula is much easier to derive using the matrix inversion approach (see
[2]) rather than using the purely algebraic approach. It is worth noting that LMMs have been widely used to
provide the numerical solution of first order systems of IVPs. In this paper, we propose a LMM that is applied
directly to (1) without first reducing it to a system of first order ODEs. Although the proposed LMM can be
obtained as a finite difference method with constant coefficients as in the conventional fashion, it has more
advantages when initially derived and expressed with continuous coefficients for the direct solution of (1). Thus,
we approximate the exact solution y{x) by seeking the continuous method ¥ (xjof the form:

_‘}_':.1':] = E:;jﬁ 0c; (x) ¥naj T h? Ef;jﬁg_.':x:] .fi"!+_i' 2

where x € [a, b] and the following notations are introduced. The positive integer k& = 2 denotes the step number
of the method (2), which is applied directly to provide the solution to (1). In this light, we seek a solution on

My a=x,<x;<...<x,<x,,<.<zxy=b h=x,,—x,n=0L.. N

where 1 is a partition of [z, k] and h is the constant step-size of the partition of w;;. The number of
interpolation points + and the number of distinct collocation points = are chosen to satisfy 2 = + =< k, and

0« = = k+ 1 respectively. We then construct a k-step multistep collocation method of the form (2) by
imposing the following conditions:

J"‘{‘ri’!+j':] = ¥aef, 50l r—1, 3

J"‘"{‘ri’!+_i':]:ﬁ’!+_i'1;: 0.1....5—1. 4)
Equations (3) and (4) lead to a system of (+ + =) equations and (= + =) unknown coefficients to be determined.

In order to solve this system, we require that the linear k-step method (2) be defined by the assumed polynomial
basis functions:

o () = Eyzf o4y R ()i = (01, = 1) (5)
and
Bilx) = b E32§ B,y R j = {01, ....5 — 1} (6)

To obtained 2; {x] and _Ej-{x], [19] arrived at a matrix equation of the form:

MH =1 @
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which imply
M=H"? ®)

where the constants ;. ; and h? Birsj, § ={0.1,...7+ 5 — 1} are undetermined elements of the (r + 5) x
(v + 5) matrix M, given by

0o gy o OOy h* By i PR
Cap g o0 Cgpy h*Bap h*Bae_y
M = )
DC?"+3_D Dci" +:21 Dci" +2r—1 h‘ .EF+S_D A h‘ .Ei"+3_3—1
9)

We also define the interpolation/collocation matrix H as

[ )

PD':I“:] Pr'+s—1|:-rr!:]
PD':-rnH.:] Pr'+.s—1{’rr!+1:]
Py(xpsr_y) Prrso1Gnerd)
H= |PR(x,) B )
Pr.:r{-rr!ﬂ.:] Pi:r-l-s—l r!+1:]
Pl;rl::'ri’!+3—l:] o Pi:r-h?—l i’!+3—l:]

(10)
we consider further notations by defining the following vectors:

@ = {J’ﬂ B URRNS SRR S ARRPRNY & +3—1.:]T

W) = (RGP, s By ()7
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where T denotes the transpose of the vectors.

The collocation points are selected from the extended set &, where

P ={xp s Xnek s P X k1 Xnaid

1. DERIVATION OF BLOCK METHODS
Case I: FOSBM
Consider the following specifications: k=4, r = 4 and s = 1 where { x,.X,,1.%5,2.%,,7 ) are interpolation

points and {x .4 }as collocation point, then following (3) to (10), we obtained H as:

/l Xy xl xd x5 A
1 Tn+t xiﬂ_ ‘r;’-1!+1 -r;+1
1 Tn+z xiﬂ ‘r;’-1!+2 Tn+z
1 Ln+z xiﬂ ‘r;’-1!+2 Tn+z

\.0 0 2 6xp,., 12x32
(11)

After some manipulations to the matrix inverse of (11), we obtained the continuous formulation

(12)

Evaluating (12) at x. ;. j = 4 and its second derivative evaluated at x,.; j= 2 and 3,while its 1% derivative
is evaluated at x,.; j= 0 yields the following set of discrete equations whose coefficients are reported on
table 1.

Case Il: FISBM
When the following specifications: k=5, = Sand s = 1where { X, X, 4. %2, X3 %4 } are interpolation
points and {x . s } as collocation point are considered, then following (3) to (10), we obtained H as:
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1
\.0

(14)

En+t

En+z

En+a

En+a

xﬁ+i
xﬁ+:
Xtz

xﬁ+4

xd b x5 A
Ii+1 Ii+1 I3+1
Ii+: Ii+: I3+:
Ii_,_g x;+! x;+!

2 4
Tn+s Tn+a Tn+d

z 2
Brp,s 12 x5, . 20 .rﬂ+5/

We do same as in case I, to obtain the continuous formulation of (14) as:

(15)

Evaluating (15) at x.; j =3 and its second derivative evaluated at j = 2,...4. while its 1% derivative is
evaluated at j = 0 yields the following set of discrete equations, see table 2 for coefficients of the method.

Case I11: SISBM
We now look at the following specifications: k=6, = 6 and s = 1where [ XX, . X0, Xpes Tnpg Xnes}

are interpolation points and {x,,.¢ } as collocation point, then H becomes:
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(1 P R B P
1 Xnet Trai  Fner Xped Xhet Xpet
1 Xnez Tpaz  ¥pez Tmez Fra Thes
1 Xnsz Fnez  Fpes Xpss Thea Xpaz
1 Xpsq Tnes  Tnes Xhes Xhed X
1 Xnss Xnss  Tass  Tmes  Xnss £
k0 0 2 bxn,e 12x3.. 20x3., 20 .ri+5j
17)
The continuous formulation of (17) is:
58997
-—& 2 3 4
(x) — 24360 14235 & 37733 & 2899 &
Y h 6496 42 38976 43 12992 4
5 6 2355 £
4999 g 15 g 406
N 1 R — P
194880 5 = T 12002 46 |¥n T 7
4 3 2 6
11209 & n 43451 & 13389 & 65 g
9744 4 9744 ;3 1624 ;2 9744 16
X 5595, .
1381 & n 812 n 307 §
9744 55 |Vn+1 2 19488 16
2 3 4 5
42981 & 164891 & 47207 & 6229 &
3248 42 19488 43 19488 p4 19488 45
Yn+2
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3425

2 === 4 3
L | o525 & 600 ° 4259 & 40819 &
812 12 7 1624 2 4872 3
6 2
31 & 1801 & L, | 37563 &
1624 ;6 4872 45 |Mn+3 6496 2
4335
3 - g 5 4
170309 & 1624 > 8539 & 57049 &
38976 ;3 2 38076 ;5 | 38976
6 2 —39§ 3
L 461 & L | 6o & | 70> |, 323 &
38976 ;6 |'n+4 56 2 h 336 ;3
o1z g 1 &° g9 & N (_ 15 )h
336 4,4 336 40 1680 55 |/n+5 406
L85 & 15 & 1 &% 225 &
3248 ;2 3248 43 | 3248 4,4 3248 K
137 .2
* Te24 © an +6
(18)

Evaluating (18) at x,. ;. j = 6 and its second derivative evaluated at j = 2.

.3, while its 1% derivative is

evaluated at j = 0 yields the following set of discrete equations, see table 3 for coefficients of the method.:

Table 1: Coefficients of the FOSBM which we called equations 13z — 13d

k F | Cp+ Gp &y Gy O3 2F] Uy By 8y s B3 B,
] 11 E 113 104 1 _ _ - -
-z S o
7 N ) . 32
9 7 T - - - 35 -11
145 -2 2 -2 1 .1
444 37
4 3
5 ) 1 - 35 - 1
e _t - -1 _s _ —_—
468 5 13 5 78
15 a2y L 2 - - - 1
~353 756 - 1E9 . 17
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Table 2: Coefficients of the FISBM which we called equations 16a — 16e

F | Cp+s Gp &y G G Gy Gy Uy By 8y 85 B 8y Bs
_E _z B2oOo_ER a4 1 1 = - - - - - 4
675 -] 45 15 45 45
391 1 108 24
7503 2 _ae am e TN - )
172 iz 172 172
227
135 1 141 1 283 _
4 | 17040 " isazs 7L 288 568 i 284 - - - 1% - 3
1 _r 2y = _x 1
275 0 15 15 0 . 5 )
1399 s 4 B85 6T s -
4256 1064 133 4158 - - - - - - 3
31920 266
Table 3: Coefficients of the SISBM which we called equations 19a — 19f
Crnisz tp ty ty g F ty | Ug By By B B Bs Bs
g B
_i 1!:- —fi 1485 _1":£ 5265 _g 1| 1 - - - - - - 45
=g B11 203 4DE 203 Bi7 T 2
13097
154860 1958 1735 11177 EGED  ELEGL 1 5162 - - - - - 2436 —411
" 2pesm 2581 10324 2581 20848 ) 1_
3262 18173 - - - 9744 - 156
227 _ e 3@3es ea2s . sele
272595 19173 1847Z 1173 1P173 101732
1
7 5 7 55 _ 19 29 1077 - - =411 - - 1
- 10770 " 1436 FIE  Tim 4308 TiE
469 1
- o - - - —2436 - - - 6
86745 | 28t 1 _ 58 58 53783
11566 11566 5783
137 1 - - - -1
- 52887 3357 1370 2601 37T S
710 | T e " zpzs 1413 EE5Z 2925 157
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IV. ANALYSIS OF THE BLOCK METHODS
Order and error constant
Following Fatunla [4, 5] and Lambert [7, 8 and 9], we define the local truncation error associated with the
conventional form of (2) to be the linear difference operator:

LlyGhih 1= Ef, o v(x + jh) — h? By" (x + jh)
(20)

Where the constant coefficients C;.g = 0.1... are given as follows:

C,= E?:o o

Cl :Ejlzl}.lr Dc_i'

Cg= i E?:nfq oy —glg —1) E?:njq_:.gj
(21)

The new block methods 13, 16 and 19 are of uniform orders P = 4, 5 and 6 respectively (see tablesl, 2 and 3).
According to Henrici (1962), the block methods are consistent.

V. CONVERGENCE
Consider SISBM, the block methods shown in (19) can be represented by a matrix finite difference equation in
the form:
Wy = AV, + RB Ry + BoFy il
(22)

where
F‘I1'+L = I:--.1:""?! + L -'.1:""?!+E\:]T-' Hh'—l = I:}"i’!—ﬁ-' "".‘-""i’!:]T-'
Fosar = {Fi'!+1J ---an+5:]TJ By = ':E!—:v ,,,,F;!]T,

Andw=0,1,2,... and n is the grid index

And

[1 0 0 0 0 0 O\
0 1 0 0 0 0 0

1= 10 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
\0 0 0 0 0 0 1)
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(0 0 0 0 0 0 1)
0 0 0 0 0 0 1
A=|0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
\0 0 o o 0 o0 1)
2641 4501 Ta4e Q5o 475
(0 480 26D 240 120 288 )
23 1772 637 332 405
O T = T = 0
_ 4599 525 5643 1467 1203
Bi= |0 10 e en 40 160
0 & _wse 16 m  an
15 45 3 T s 45
o 5 _mrs s s s
SE T2 42 - e BB

E57 ToR TE3 I%6 23
K 0 oy _ 1= = _= j

10 5 5 5 7
and B, =0

It is worth noting that zero-stability is concerned with the stability of the difference system in the limit as h
tends to zero. Thus, as i — 0. the method (13) tends to the difference system.

IP‘I1'+1 - ‘4}:1'—1 =0
Whose first characteristic polynomial 2{@) is given by
(@) = det(QI — 4)

=Q%(@-1)

(23)

Following Fatunla [4], the block method (19) is zero-stable, since from (23), 2@} =0 satisfy
|QJ-| = 1, j = 1..... k and for those roots with |QJ.-| = 1, the multiplicity does not exceed 2. The block method

(19) is consistent as it has order P > 1. Accordingly following Henrici [6], we assert the convergence of the
block method (19).

VI. STABILITY REGION OF THE BLOCK METHOD
To compute and plot absolute stability region of the block methods (19), the block method is reformulated as
General Linear Methods expressed as:

()= @7 (o))
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where
. 0 0 0 0 0
QoD
0 0 0 0 0 0 Ta1700
4872
A= -
O 11566 O O 0
1624 4
O O O 4308 O O 4308
9744 156
0 0 0 0 PPy 0 ~ oo
QF4d 1644
0 0 0 0 0 — -
I1De4 B IDe4 B
\\ 45
0 0 0 0 0 0 —
P
. 0 0 0 0 0
QF4d 1644
0 0 0 0 0 -
I1De4 B 20642
Q744
B= | 0 0 0 0 1o o -
1624 4
0 0 0 4308 O O 4308
4872
0 0 Tio0e 0 0 0
0 0 0 0 0 0
o/ o 0 0 0 1
1357R BSD2S 137000 167850 U SEQDT
14130 141300 1413200 141300 141300
116 55 575D B13E6
U= — 0
11566 11566 11566 11566
174 1319 U 2370 2212 is
4308 4308 4308 430e 4308
DEIR U B4 24 FTEE 1493 227
1e1r73 1eira 1eira 1eira 1173
U E1E01 Fig40D 432554 13911 1855
20648 2063 B 20648 IDE4E 20648
\\ iz S265 1270 1485 243
¥ B12 03 406 03

13
11566

156
ieira

13
11566

200 ‘/

141300

6L
11566

Bi12
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2 C5265 1270 —1485 743 -137
7 BiZ 203 406 203 B12
0 E1E91 —71B40 42554 —-123912 1855
IDE4E IDE4E 0648 10648 10648
DEIE B424 2286 —-1482 117
V= - a — — - —
18173 1B173 1B173 1B173 18173
—-174 231% 0 2370 -222 15
4308 4208 4208 4308 4308
—116 55 5752 0 6136 —361
11566 11566 11566 11566 11566
—13572 E5025  —137000 167850 EEGOT
141300 1300 141300 141300 141300

N

Substituting the values of A, B, U, V into stability matrix and stability function,then using maple package yield
the stability polynomial of the block method.Using a matlab program, we plot the absolute stability region of
our proposed block method( see Fig. 2).
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Fig. 1: Absolute Stability Regions of the Discrete Methods
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Absolute Stability Regions of the BElock Methods
In this paper, we use FOSBM, FISBM and SISBM to mean the Four, Five and Six Step Block Methods
respectively.

VIL. IMPLEMENTATION STRATEGIES
In this section, we have tested the performance of our four, five and six-step block method on two (2)
numerical problems by considering two IVPs (Initial Value Problems). For each example, we obtained the
absolute errors of the approximate solution.

Problem 1.1:

Consider the VP for the step-size h = 0.01

y" — 100y =0,%(0) =1,y'(0) =-10

Theoretical Solution given by: y(x) = g~
Problem 1.2:

We consider the I\VVP for the step-size h = 0.1

¥y +y =090 =150 =1

Theoretical Solution given by: ¥(x) = Cosx + Sinx x

Table 4: Absolute errors for problem 1.1 using the FOSBM, FISBM and SISBM

x Absolute Errors (FOSBM) Absolute Errors (FISBM) Absolute Errors (SISBM)

0 0 0 0.000e+0
0.01 1.1067e-5 1.2413e-6 1.353e-7
0.02 3.1403e-5 3.4226e-6 3.658e-7
0.03 5.2700e-5 5.7008e-6 6.051e-7
0.04 7.4521e-5 8.0308e-6 8.502e-7
0.05 8.2312e-5 1.0439%e-5 1.104e-6
0.06 9.7067e-5 1.1244e-5 1.369e-6
0.07 1.1323e-4 1.2725e-5 1.450e-6
0.08 1.3052e-4 1.4369e-5 1.597e-6
0.09 1.3614e-4 1.6156e-5 1.763e-6
0.10 1.4725e-4 1.8102e-5 1.946e-6
0.11 1.6012e-4 1.8649e-5 2.099e-6
0.12 1.7459e-4 1.9725e-5 2.374e-6

where Absolute Error = ly(x) — vl
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Table 5: Absolute errors for problem 1.2 using the FOSBM, FISBM and SISBM

Absolute Errors (FOSBM) | Absolute Errors (FISBM) | Absolute Errors (SISBM)

0 0 0 0.000e-0
0.1 1.0368e-5 2.0448e-6 1.157e-7
0.2 2.9141e-5 5.6206e-6 3.099e-7
0.3 4.8219e-5 9.23%e-6 5.055e-7
0.4 6.6810e-5 1.2761e-5 6.957e-7
0.5 6.9493e-5 1.6149e-5 8.789%e-7
0.6 7.3819e-5 1.8399e-5 1.054e-6
0.7 7.7560e-5 2.2224e-5 1.008e-6
0.8 8.0520e-5 2.5939e-5 9.226e-7
0.9 7.5308e-5 2.9389e-5 8.261e-7
1.0 6.5139%-5 3.2540e-5 7.216e-7
1.1 5.4005e-5 3.4422e-5 6.099e-7
1.2 4.2326e-5 3.7498e-5 4.919e-7

VIII. CONCLUSIONS

We have proposed a family of four, five and six-step block methods (FOSBM, FISBM, SISBM)
with continuous coefficients from which multiple finite difference methods were obtained and applied as
simultaneous numerical integrators ,without first adapting the ODE to an equivalent first order system. The
methods were derived through interpolation and collocation procedures by the matrix inverse approach. We
conclude that the new block methods are of uniform orders 3, 4 and 5 and were suitable for direct solution of
general second order differential equations. All the block methods were self- starting and all the discrete
equations used were obtained from the single continuous formulation including their derivatives which were
evaluated at some interior points to form part of the block. The application of our block methods on two real life
numerical problems (Problem 1.1 and Problem 1.2) give results which tend to converge to their respective
theoretical solutions. Approximate solutions ¥; .¥....%; were also obtained in block at once thereby

eliminating the use of any Predictors, this tend to speeds up the computational process. The absolute errors
obtained from the application of our block methods to the problems stated (Table 1.1 and Table 1.2) shows the
level of convergence and accuracy of our methods.
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