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A mathematical model for three-species interactions in a food chain, with the assumption that the
interacting species are mobile, has been constructed using a combination of Holling’s type III and
the BD functional responses. Conditions for the onset of diffusive instability were determined. The
results indicate the possibility of a stable coexistence of the three interacting species in form of
stable oscillations under the reflecting boundary conditions. Habitat segregation also occurs under
these conditions. However, under the absorbing boundary conditions, the species experience
damped oscillations leading to their extinction. The effects of cross-diffusion of the intermediate
and the toppredator were also examined.

1. Introduction

A food chain is a common natural occurrence in an ecosystem due to interactions among
species in their habitats. A food chain could occur either among terrestrial or aquatic
species. The relationships among species could be those of predator-prey, mutualism, or
competition for resources. In this paper, we consider predator-prey interactions in a food
chain. From the Lotka-Volterra food chain model, a lot has been done on predator-prey
interactions in food chains using different functional responses such as the Holling’s types
(I–IV) and the Beddington-DeAngelis (BD) functional response and many others [1–3]. The
Holling’s type II functional response is the most commonly used in mathematical ecology
[4]. However, this type of functional response may not be the best for models involving
interference among predators, as this is best modelled by the BD functional response which
accommodates interference among predators [4, 5]. However, the Holing’s type III is more
suitable for models which assume resource refuge effects, that is, scarce resources become
better protected from exploitation. Kassem and Ndam [6] have exploited some of these
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special properties of the functional responses to construct a model for the predator-prey
interactions in a food chain. We intend to build on this in the current model by assuming
that the three species are mobile, which makes it more physically realistic, since species
move about and also try to escape from their enemies in their natural habitats. Apart from
exploiting those properties as explained by Kassem and Ndam [6], self-diffusion as well
as cross-diffusion of the species will be examined, as can be seen in Okubo and Levin [7].
With these assumptions, we hope to capture most of the physical interactions of species in an
aquatic or terrestrial habitat. The Holling’s type III functional response is given by

f(P) =
cP 2

a2 + P 2
, (1.1)

where a is the half-saturation constant and c is the maximal consumption rate of the predator
and P is the prey density, while the BD functional response is given by

f(P,Q) =
αP

λ + P + γQ
, (1.2)

where Q is the intermediate predator density, while α, λ, and γ are positive constants,
representing the maximum consumption rate, the saturation constant, and the predator
interference parameter, respectively [8]. The remaining parts of this paper will be organised
as follows: the formulation of the model will be considered in Section 2, numerical
simulations will be considered in Section 3, while Section 4 will be dedicated to the stability
analysis of the system. Finally, some conclusions and future directions will be mentioned.

2. Mathematical Formulation

A model for predator-prey interactions in a three-trophic level food chain with diffusion of
the three species is constructed. This model consists of a primary producer P , called the prey,
an intermediate predator Q, and a top predator R, a term adopted from [2]. We assume that
the prey P has a logistic growth in the absence of the intermediate predator. It is also assumed
that the intermediate predatorQ has a BD-functional response, while the top predator R, has
a Holling’s type III functional response and that all the three are mobile. Hence we obtain the
following model equations:

∂P

∂t
= D1

∂2P

∂x2
+ rP

(
1 − P

K

)
− a1PQ

λ + P + γQ
, (2.1)

∂Q

∂t
= D2

∂2Q

∂x2
+

b1PQ

λ + P + γQ
− a2Q

2R

β2 +Q2
− μ1Q, (2.2)

∂R

∂t
= D3

∂2R

∂x2
+

b2Q
2R

β2 +Q2
− (

μ2 + q
)
R, (2.3)

P(x, 0) > 0, Q(x, 0) > 0, R(x, 0) > 0 (2.4)
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subject to the reflecting boundary conditions

D1
∂P(0, t)

∂x
= D1

∂P(L, t)
∂x

= 0, D2
∂Q(0, t)

∂x
= D2

∂Q(L, t)
∂x

= 0, D3
∂R(0, t)

∂x
= D3

∂R(L, t)
∂x

= 0

(2.5)

or the absorbing boundary conditions

P(0, t) = P(L, t) = 0, Q(0, t) = Q(L, t) = 0, R(0, t) = R(L, t) = 0, (2.6)

where r > 0 is the intrinsic growth rate of the prey and K > 0 is its carrying capacity and
D1, D2, and D3 are the constant diffusion coefficients of the prey, the intermediate predator,
and the top-predator, respectively; μ1 > 0, μ2 > 0, and q > 0 are the natural mortality rates of
the intermediate and top-predators, and the combined harvesting effort of the top-predator
respectively. The other positive constants ai, bj , β,λ, and γ have the samemeanings as defined
in (1.1) and (1.2). The reflecting boundary conditions (2.5) imply that there are no population
fluxes across the boundaries of the habitat. The boundary conditions (2.6), on the other hand
mean that the environment always contains the equilibrium population [7].

Equations (2.1)–(2.3) can be scaled as follows:

t =
t∗

r
, P = KP ∗, Q = KQ∗, R = KR∗, x = Lx∗,

a1 = ra∗
1, a2 = ra∗

2, b1 = rb∗1, b2 = rb∗2, μ1 = rμ∗
1, μ2 = rμ∗

2, q = rq∗,
(2.7)

where the asteriated variables are nondimensional variables. We obtain after dropping
asterisks the scaled system

∂P

∂t
=

∂2P

∂x2
+ P(1 − P) − a1PQ

m1 + P + γQ
, (2.8)

∂Q

∂t
= ρ

∂2Q

∂x2
+

b1PQ

m1 + P + γQ
− a2Q

2R

m2
2 +Q2

− μ1Q, (2.9)

∂R

∂t
= σ

∂2R

∂x2
+

b2Q
2R

m2
2 +Q2

− (
μ2 + q

)
R, (2.10)

P(x, 0) > 0, Q(x, 0) > 0, R(x, 0) > 0, (2.11)

∂P(0, t)
∂x

=
∂P(L, t)

∂x
= 0, ρ

∂Q(0, t)
∂x

= ρ
∂Q(L, t)

∂x
= 0, σ

∂R(0, t)
∂x

= σ
∂R(L, t)

∂x
= 0, (2.12)

where we have taken L =
√
D1/r, ρ = D3/D1, σ = D2/D1, m1 = λ/K, and m2 = β/K.
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2.1. The Effects of Cross-Diffusion

It is natural for the preys to run away in the presence of their enemies, the top-predators. This
phenomenon is called cross-diffusion. We introduce in this model cross-diffusion terms with
constant coefficients D12 and D21. The scaled model equations then take the form

∂P

∂t
=

∂2P

∂x2
+ P(1 − P) − a1PQ

m1 + P + γQ
, (2.13)

∂Q

∂t
= ρ

∂2Q

∂x2
+
∂2R

∂x2
+

b1PQ

m1 + P + γQ
− a2Q

2R

m2
2 +Q2

− μ1Q, (2.14)

∂R

∂t
= σ

∂2R

∂x2
+ δ

∂2Q

∂x2
+

b2Q
2R

m2
2 +Q2

− (
μ2 + q

)
R, (2.15)

where δ = D21/D12, subject to the boundary conditions (2.6) and (2.12).

3. Numerical Simulation

Numerical simulations showing the spatial diffusions and the time-course solution are shown
in the figures below for the parameter values

a1 = 1.2, a2 = 0.25, b1 = 0.5, b2 = 0.75, m1 = 0.2, m2 = 0.1,

μ1 = μ2 = 0.1, γ = 0.25, ρ = 1.25, σ = 1.05, q = 0.35,

a1 = 2.25, a2 = 0.15, b1 = 0.75, b2 = 1.05, m1 = 0.2, m2 = 0.1,

μ1 = μ2 = 0.1, γ = 0.5, ρ = 1.10, σ = 1.5, q = 0.5,

(3.1)

for the two sets of boundary conditions (2.6) and (2.12). The results indicate that while
the absorbing boundary conditions lead to diffusion of the three interacting species, the
population density distributions depict a scenario known as habitat segregation under the
reflecting boundary conditions as seen in Figures 1 and 2, respectively. On the other
hand, the time-course solution under the absorbing boundary conditions produce damped
oscillations leading to the gradual extinction of the interacting species (Figure 3). However,
imposing the reflecting boundary conditions leads to a coexistence of the species in form of
stable oscillations (Figure 4). Moreover, the long-time behaviour of the interacting species
indicates the appearance of patchiness in such a way that the preys tend to separate from
their predators (Figure 5). This result confirms the fact that habitat segregation serves as a
stabilising factor for possible coexistence of the interacting species, as noted by Okubo and
Levin [7].

Figures 6 and 7 show the effects of cross-diffusion on the spatial density distribution of
the interacting species. While Figure 6 depicts the influence of both self- and cross-diffusion
on the spatial distribution of the species where the intermediate predators diffuse faster than
the others, Figure 7 shows the population distribution due to cross-diffusion in the absence of
self-diffusion, in which case the top-predator becomes least mobile. This could be due to the
habit segregationwhich occurs under the circumstance. The scenarios described above clearly
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Figure 1: Diffusion of the three species for the absorbing boundary conditions.
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Figure 2: Habitat segregation due to the reflecting boundary conditions.
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Figure 3: Extinction of the three species with the absorbing boundary conditions.

P

Q

R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200

t

Po
pu

la
ti

on
 d

en
si

ty

Figure 4: Stable oscillations of the interacting species with time.
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Figure 5: Development of patchiness as a long time scenario.
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Figure 6: Cross and self-diffusion of the interacting species.
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Figure 7: Spatial distribution of population due to cross-diffusion of the predators.

explain what actually happens among interacting species in an ecosystem. In the presence of
self- and cross-diffusion, both species are mobile, and in addition, the intermediate predators
try to escape from the top-predators, hence they are most mobile.

4. Stability of the Uniform Steady State

In order to examine the stability, the system (2.13) can be recast in the form

∂P

∂t
=

∂2P

∂x2
+ F1(P,Q),

∂Q

∂t
= ρ

∂2Q

∂x2
+
∂2R

∂x2
+ F2(P,Q,R),

∂R

∂t
= σ

∂2R

∂x2
+ δ

∂2Q

∂x2
+ F3(Q,R),

(4.1)

where

F1(P,Q) = P(1 − P) − a1PQ

m1 + P + γQ
,

F2(P,Q,R) =
b1PQ

m1 + P + γQ
− a2Q

2R

m2
2 +Q2

− μ1Q,

F3(Q,R) =
b2Q

2R

m2
2 +Q2

− (
μ2 + q

)
R.

(4.2)
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Suppose that there exists a spatially uniform steady state (Pc,Qc, Rc), such that

Fj(Pc,Qc, Rc) = 0, j = 1, 2, 3. (4.3)

To determine the stability of the uniform steady state, we perturb the population densities
thus

P(x, t) = Pc + P ′(x, t),

Q(x, t) = Qc +Q′(x, t),

R(x, t) = Rc + R′(x, t).

(4.4)

Hence the linearised system becomes

∂P ′

∂t
=

∂2P ′

∂x2
+ a11P

′ + a12Q
′ + a13R

′,

∂Q′

∂t
= ρ

∂2Q′

∂x2
+
∂2R′

∂x2
+ a21P

′ + a22Q
′ + a23R

′,

∂R′

∂t
= σ

∂2R′

∂x2
+ δ

∂2Q′

∂x2
+ a31P

′ + a32Q
′ + a33R

′,

(4.5)

where

(
aij

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂F1

∂P ′
∂F1

∂Q′
∂F1

∂R′

∂F2

∂P ′
∂F2

∂Q′
∂F2

∂R′

∂F3

∂P ′
∂F3

∂Q′
∂F3

∂R′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.6)

is the Jacobian matrix for the system evaluated at the uniform equilibrium point (Pc,Qc, Rc).
In order to examine the linear stability of the system (4.5), we use the normal modes approach
by assuming solutions of the form P ′ ∼ e(λt+ikx), Q′ ∼ e(λt+ikx), and R′ ∼ e(λt+ikx), where λ and
k are constants. Thus the eigenvalues satisfy the equation

∣∣∣∣∣∣∣∣

λ + k2 − a11 −a12 0

−a21 λ +
(
1 + ρ

)
k2 − a22 −a23

0 −a32 λ +
(
ρ + δ

)
k2 − a33

∣∣∣∣∣∣∣∣
= 0, (4.7)

and one obtains the characteristic polynomial

λ3 + (d11 + d22 + d33)λ2 + (d11d22 + d11d33 + d22d33 − a12a21 − a23a32)λ

+ (d11d22d33 − a23a32d11 − a12a21d33) = 0,
(4.8)

where d11 = k2 − a11, d22 = (1 + ρ)k2 − a22 and d33 = (ρ + δ)k2 − a33.
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For stability, the following conditions should be satisfied:

d11 + d22 + d33 > 0, (4.9)

d11d22d33 − a23a32d11 − a12a21d33 > 0, (4.10)

(d11 + d22 + d33)(d11d22 + d11d33 + d22d33 − a12a21 − a23a32)

> d11d22d33 − a23a32d11 − a12a21d33.
(4.11)

If diffusion is neglected, that is, k = 0,

d11 + d22 + d33 > 0 =⇒ a11 + a22 + a33 < 0. (4.12)

Diffusive instability sets in if any of conditions (4.9)–(4.11) is violated. Condition (4.9) is
invariably satisfied in the presence of diffusion. Thus, only conditions (4.10) and (4.11) will
be examined. For instability in the system due to self-diffusion (δ = 0), inequalities (4.10) and
(4.11) are reversed, that is

H
(
k2
)
= A1k

6 −A2k
4 +A3k

2 +A4 < 0, (4.13)

H ′
(
k2
)
= B1k

6 − B2k
4 + B3k

2 + B4 < 0, (4.14)

where A1 = ρ + ρ2, A2 = a11ρ
2 + (a11 + a22 + a33)ρ + a33, A3 = (a11a22 + a11a33 − a12a21)ρ +

a11(a22 +a33) and A4 = a11a23a32 +a12a21a33 −a11a22a33; while B1 = (2ρ+ 1)(ρ+ 2)(ρ+ 1), B2 =
(2ρ+1)(2ρ+3)a11+3(ρ+1)a2

22+(ρ+2)(3ρ+2)a33, B3 = (2ρ+1)(a2
11−a23a32)+4(ρ+1)(a11a22+

a11a33 + a22a33) + (ρ + 2)(a2
33 − a12a21) + (ρ + 1)a2

22, and B4 = (a11 + a22)(a12a21 − a2
33) + (a22 +

a33)(a23a32 − a2
11) − (a11 + a33)a2

22 − 2a11a22a33.

The minimum value of H(k2) occurs at k2 = k2
min = (A2 +

√
(A2

2 − 3A1A3))/(3A1).
Hence for instability to set in,

H
(
k2
min

)
=

(
A2 +

√
A2

2 − 3A1A3

)3

27A2
1

+
A3

(
A2 +

√
A2

2 − 3A1A3

)

3A1
+A4

<

A2

(
A2 +

√
A2

2 − 3A1A3

)2

9A2
1

.

(4.15)

Similar result is obtained for H ′(k2
min) in terms of the Bi, i = 1, 2, 3, 4 in (4.14).
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5. Conclusions

A mathematical model for three-species interactions in a food chain is constructed using
Holling’s type III and the BD functional responses. Two sets of initial and boundary
conditions, the absorbing and the reflecting boundary conditions, are imposed. The species
are also assumed to undergo self- and cross-diffusion with constant coefficients of diffusion.
Numerical simulation results show that the absorbing boundary conditions allow mobility
of the species throughout the spatial domain. The top-predators tend to diffuse faster than
the intermediate predators, even when the coefficient of diffusion of the latter is higher
(Figure 1). This situation could be explained by the fact that the intermediate predators
are protected at low densities by the use of the Holling’s type III functional response.
However, under these boundary conditions, the species are driven into extinction as depicted
in Figure 3.

With the reflecting boundary conditions, the habitat segregates and the species coexist
in form of stable oscillations as can be seen from Figures 2 and 4, respectively. The long-time
scenario indicates the development of patchiness in which the preys tend to separate from
their predators (Figure 5). When both self- and cross-diffusions are present, the population
density distributions indicate that the intermediate predator diffuse faster than the others as
depicted in Figure 6. However, in the absence of self-diffusion, the top-predator becomes the
least mobile (see Figure 7). The change in scenario is probably due to the habitat segregation.
This model, with the reflecting boundary conditions, can be applied to fisheries, where
the economically more viable species is harvested periodically without driving them into
extinction.

Conditions for the onset of diffusive instability are also determined using linear
stability theory. Nonlinear stability analysis becomes cumbersome and it is left for future
investigation.
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